
HELLAS: A Specialized Architecture for Interactive
Deformable Object Modeling

Shrirang Yardi
Department of Electrical and

Computer Engineering
Virginia Tech

Blacksburg, VA

yardi@vt.edu

Benjamin Bishop
Department of Computing

Sciences
University of Scranton

Scranton, PA

bishop@cs.uofs.edu

Thomas Kelliher
Department of Mathematics

and Computer Science
Goucher College

Baltimore, MD

kelliher@bluebird.goucher.edu

ABSTRACT
Applications involving interactive modeling of deformable
objects require highly iterative, floating-point intensive nu-
merical simulations. As the complexity of these models in-
creases, the computational power required for their simula-
tion quickly grows beyond the capabilities of current gen-
eral purpose systems. In this paper, we present the design
of a low–cost, high–performance, specialized architecture to
accelerate these simulations. Our aim is to use such special-
ized hardware to allow complex interactive physical model-
ing even on consumer-grade PCs. In this paper, we present
details of the target algorithms, the HELLAS architecture,
simulation results and lessons learned from our implemen-
tation.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—
algorithms implemented in hardware

General Terms
Computer Graphics

Keywords
interactive physical modeling, deformable objects, floating–
point intensive, specialized hardware

1. INTRODUCTION
Interactive physical modeling of deformable objects is im-

portant for a number of applications areas like 3D gam-
ing [8], surgical simulations [4], wargame simulations and
others. Interactive simulation of such models requires highly
iterative, floating-point intensive, numerical computations
and is difficult because the simulation must be advanced
under real-time constraints. With an increasing demand for
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more realistic models, it is likely that the computational
resources required by these simulations may continue to ex-
ceed those provided by the incremental advances in general-
purpose systems [12]. This has created an interest in the
use of specialized hardware that provides high performance
computational engines to accelerate such floating-point in-
tensive applications [6, 7].

Our research focuses on the design of such specialized sys-
tems. However, our approach has several important differ-
ences as compared to previous work in this area: (i) we
specifically target algorithms that are numerically stable,
but are much more computationally intensive than those
used by existing hardware implementations [3,6]; (ii) we aim
to design a low-cost implementation that can allow these ap-
plications to be run at interactive speeds even on consumer-
grade systems; and (iii) rather than implement only a par-
ticular application in hardware, we propose a reconfigurable
system that can support a broad class of applications (fluid
dynamics, ray tracing, etc.) that use algorithms similar to
deformable object modeling. In this paper, we describe the
design and implementation of such a specialized hardware
system, which we term HELLAS.

1.1 Related Work and Our Contributions
Existing work on the design of special–purpose hardware

focuses mainly on the following areas: (i) acceleration of
specific applications (e.g. the GRAPE project that targets
N-body gravity computations [10]) and (ii) implementation
of less computationally expensive, but numerically unstable,
algorithms (e.g. simple explicit integration techniques) for
physical modeling [3,6]. Recent work has proposed the use of
Graphics Processing Units (GPUs) (for example, NVIDIA’s
GeForce FX) for accelerating sparse linear solvers [7]. But
these suffer from drawbacks which we explain in Section
5. Due to well-known problems in performing floating point
arithmetic using programmable logic [9], FPGAs are also not
a suitable platform for implementing these algorithms. Fur-
ther, due to the widespread interest for deformable object
modeling in the graphics community [14], there is an active
need for specialized systems to accelerate these applications.
Recently, Ageia Technologies [1] has proposed a specialized
processor, called Physics Processing Unit (PPU) [2], to ac-
celerate physics–related calculations in the context of com-
puter gaming. However, very few technical details of their
design are publicly available.

This paper describes the design and implementation of a
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Figure 1: Computational Resources for different
Model Complexities

low cost, proof–of–concept system to allow real–time physi-
cal modeling of complex scenes. We first present a brief de-
scription of the algorithms used for modeling and simulation
of deformable objects. We outline our rationale behind de-
signing specialized hardware to accelerate these algorithms
based on a simulation study. We then provide details of
the HELLAS architecture, its operation and the design flow
we followed for its implementation. Finally, we describe re-
sults using a software prototype of HELLAS and our ongoing
work on a hardware prototype. Our first implementation is a
small, proof–of–concept system and was heavily constrained
by the available die area for fabrication (only 7.5 sq. mm.
was available). Hence, currently the hardware is not high–
performance, however, simulation studies using our software
prototype demonstrate the potential gain from hardware ac-
celeration.

2. ALGORITHM DETAILS
Among several different methods, mass-spring systems are

commonly used for representing and animating deformable
objects. In this approach, an object is described as a col-
lection of mass points connected by springs. Simulation is
achieved by advancing through (in our case uniform) discrete
time steps and computing the degrees of freedom (DOFs),
such as position, velocity, etc., associated with each mass

point. Large simulation time steps are required to meet
real-time constraints and the main concern when choosing
an algorithm is its numerical stability when performing such
steps. It would be convenient to use a simple explicit inte-
gration technique, such as forward Euler (p. 710 of [15]),
but these techniques frequently become unstable if a large
static step size is used [5]. Stability could be enhanced by
using an adaptive step size, but this approach is unsuitable
in interactive simulation because any step size would have
to be broken down into a (very) large number of explicit
steps. This makes it impossible to guarantee completion
within the time needed to update the display. For the ap-
plications mentioned above, we would prefer to trade accu-
racy for speed and stability, which has led to the adoption
of implicit methods for interactive simulation.

Baraff et al. [5] justify the use of implicit integration tech-
niques to allow large simulation steps. This class of algo-
rithms results in a system of partial differential equations
(PDEs) that are linearized in each time step. The linear
system thus obtained is sparse and an iterative solver such
as Conjugate Gradient (CG) [13] can be applied to produce
the solution. Thus, every simulation step consists of two
loops - an outer loop which linearizes the PDEs and sets
up the sparse system which is then iteratively solved by the
linear solver in the inner loop. The reader is referred to the
work by Baraff and Witkin [5] for a thorough treatment of
this approach. A rough outline of the algorithm structure
can be given as follows:

for (each simulation iteration) do
linearize PDEs
for (each solver iteration, while error > tolerance) do

various matrix/vector operations
update display

We measured the computational resources required for
such a simulation in terms of the memory and the number
of floating point operations (FLOPS) for different levels of
modeling detail. We analyzed these for models ranging from
a simple 2D mesh (“cloth”) to a complex 3D uniform grid
(“cube”). Figure 1 shows the memory footprint and FLOPS
vs. the number of subdivisions, which correspond to the level
of detail, for each model. We observe that, with increas-
ing model complexity, both the amount of memory and the
FLOPS required grow rapidly. Current general purpose sys-
tems typically support up to 4 streaming floating-point func-
tional units per chip and hence are unlikely to provide the
high performance required to simulate such complex models
in real-time. Hence, we believe that specialized hardware is
likely the best solution to accelerate these algorithms. More
details on our simulation study can be found in [16].

3. THE HELLAS ARCHITECTURE
Our design was motivated by the observation that the high

computational power required for detailed simulations can
be provided by increasing the number of streaming floating-
point units (FPUs). Further, simulations show that such
applications exhibit large amounts of parallelism due to ma-
trix operations and consist of relatively simple iterations (of
the CG solver) that require only a small amount of memory
for each iteration. Hence, very high performance can be ob-
tained by distributing computations over a large number of
independent units on a single chip where each unit provides
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a tight integration of floating-point arithmetic and memory.
By using a simple on-chip interconnect between these units,
a high performance, low-cost architecture can be designed.
Thus, HELLAS consists of a regular array of independent
processing elements (PEs) where each PE integrates a fast
FPU with a small control and operand memory. Inter-PE
communication is enabled by directly linking each PE (ex-
cept those at the boundaries) to its cardinal neighbors (East,
West, North and South). Large off-chip communication de-
lays are avoided by allowing off-chip transfers only at the
north-west (i.e. PE[0][0]) and south-east (i.e. PE[n-1][n-
1]) corners of the chip. Figure 3 illustrates an overview of
HELLAS.

3.1 PE Architecture
Each PE consists of a FPU, 4 SRAM banks, each with

128x32 operand memory (OMEM), a single 128x40 SRAM
bank as control memory (CMEM), inter-connect register
(COMM), I/O processing units for on-chip and off-chip links
and a small control unit. The FPU is capable of performing

OPCODE PE

XCoord

10 5

Bank

8

Offset

15

VALUE

55

00 − NOP

10 − PUT

01 − LookUp

11 − FoundIt 101,110 UNUSED

100 CMEM

111 PC

000 − 011 OMEM
YCoord

(a) OverRide Mode

0000 − NOP

0010 − SUB

0100 − MAC
0101 − DIV
0110 − BLZ

OPCODE R1 R2 R3 R4

Bank Offset

1 8

3 12 21 30 39

0

0

CONTROL −

COMM

A
R

IT
H

M
E

T
IC

1000 − STORE
0111 − LOAD

0011 − MULT

0001 − ADD

(b) Compute Mode

Figure 4: Command Formats for different modes

addition, subtraction, multiplication, multiply-accumulate
and division of 32-bit floating-point numbers. Having four
OMEM banks allows operations of the form A + B × C → D
to be performed in a single clock cycle. Each PE is uniquely
identified by its X-coordinate and Y-coordinate. For effi-
cient on-chip communication without a large routing over-
head, the design employs a simple nearest-neighbor inter-
connect. Figure 2 provides a detailed illustration of the PE
architecture.

3.2 PE Instruction Set Architecture
The PE array operates in two different modes, termed

as the OverRide and Compute modes, selected using a sin-
gle global signal called PC-Enable (for Pipe-Compute). The
OverRide mode uses a 56-bit control word (Figure 4(a)) that
identifies the target PE and specifies the location (bank and
offset) where the data/instruction is read/written. PUT and
LookUp are used to write and read the memory banks, re-

58



(a) Die Photo (b) Packaged IC

Figure 5: HELLAS Implementation

spectively. Every LookUp results in a FoundIt response that
populates the VALUE field with the resulting data.

The Compute mode ISA supports a 40-bit control word
that specifies the opcode, up to three source operands, and a
single location for the result write-back (Figure 4(b)). Each
location field uses 2 bits to specify the OMEM bank and 7
bits for the offset within the bank. The opcode consists of
the arithmetic instructions, ADD, SUB, MULT, MAC and
DIV, and a conditional branch instruction, BLZ. Intercon-
nect is supported using the LOAD and STORE instructions.
LOAD is used to access the COMM of a neighboring PE
specified by a DIR field (north, west, south, east). STORE
is used to write to the local COMM so that it can be read
by any of the neighboring PEs.

3.3 Operation
During operation, a schedule of instructions is determined

a priori on a host machine and downloaded to the PE array
using the OverRide mode. At each clock cycle, data and in-
structions are piped across the array in a 2D wave starting
from the north-west corner. The target PE is identified in
each instruction and if the command is not for the PE then
it sends the data unchanged to it’s south and east neighbors.
If the command is for the PE, then the required operation is
performed according to the opcode. In the Compute mode,
each PE executes the instruction from the CMEM location
pointed by the program counter (PC) and stores the result
in its OMEM. Results can be communicated to neighbor-
ing PEs using the COMM register. This simple dual-mode
scheme results in reduced overhead for off-chip transfers and
allows control of the array using just two global signals –
clock and PC-Enable.

3.4 Implementation
We followed a register–transfer–level (RTL) to layout de-

sign flow using the Cadence suite of CAD tools. The en-
tire system was represented in VHDL and the simulation,
synthesis, floorplanning and place–and–route was performed
using these CAD tools. We used the TSMC 0.18 µm stan-
dard cell library provided by ArtisanTMfor synthesis. The

operand and control SRAMs were designed using a 0.18 µm
memory compiler, also from ArtisanTM. The chip was fab-
ricated by MOSIS [11] as a 84-pin Leadless Chip Carrier
(LCC) package.

We had to make a number of modifications to our initial
design in order to fit it into the 7.5 sq. mm. area limit spec-
ified by MOSIS. First, to reduce the number of I/O pins, we
modified the I/O processing block of each PE so that the
56-bit input word was fed and read to/from each PE using
two consecutive cycles with 32 bits of data each. Although
this reduced the operating frequency, the functionality of the
chip was largely unaltered. Second, we had to reduce the
number of PEs so that the final chip contained only a 2x2
array of PEs. Figure 5 shows the die photo and the packag-
ing of the fabricated chip. The final design consists of 99000
NAND2 equivalent gates and can support a maximum clock
rate of 227 MHz. The average power consumption (assum-
ing a switching probability of 0.5 at each internal node) was
found to be 35 mW. However, this data (obtained from the
synthesis tool) does not include the area, timing and power
required by the SRAM banks as we did not have the layout
views of the memory blocks (the memory blocks were repre-
sented as “black boxes” in the VHDL description). We hope
to get more accurate data using actual fabricated chips.

4. PROTOTYPE TESTING

4.1 Methodology
Our current design is a proof-of-concept system and hence

our intent was to prove the viability of HELLAS to support
deformable object modeling rather than focus on a high per-
formance implementation. To achieve this, we first designed
a cycle-accurate functional simulator of HELLAS to study
the execution characteristics of deformable object modeling
applications and their mapping to the HELLAS architec-
ture. Second, to study the execution of the mapped oper-
ations on the test chips, we designed a hardware prototype
that allows the chip to be connected to a Linux host using
a parallel port. The details of the software and hardware
prototypes and the lessons learned from them are provided
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Figure 6: The HELLAS Hardware Prototype

in the following sections.

4.2 Software Prototype
The software prototype consists of our implementation of

the algorithms proposed by Baraff et al. [5] and their map-
ping onto the HELLAS architecture. The prototype cur-
rently supports solid object simulations of two models: the
2D mesh (“cloth”) and 3D uniform grid (“cube”). Mod-
els are generated automatically with an arbitrary level of
detail specified by the user. We believe that these models
are representative of the range of model complexities that
one might wish to simulate. A relatively simple gravity–
driven simulation was used. In the “cloth” simulation, one
edge of the cloth was constrained and no collision detection
was used. For the “cube” simulation, simple collision detec-
tion using control points was used (control points are addi-
tional points connected to the mass points by zero–length
stiff springs).

The prototype runs two parallel simulations – one on the
native processor and the other on the HELLAS simulator.
The simulator starts by describing the models at the spec-
ified complexity and then applies implicit integration (as
explained in Section 2) resulting in a large sparse linear sys-
tem. This system is linearized and solved by a Conjugate
Gradient Solver using multiple iterations. Each iteration
is executed on the host machine as well as the HELLAS
simulator and the values obtained by both simulations are
compared to check the accuracy of the simulator. Figure 7
shows a snap-shot of both the models during simulation on
the HELLAS simulator.

Since our main aim was to study the execution of these
applications on HELLAS, we made some minor simplifica-
tions to the simulator. First, we assumed that each PE has
unlimited operand and control memory. Second, to keep the
simulation simple, we designed a schedule where only one of
the PEs performed all the computations while the others
were used solely for communication. We ensured that these
caveats do not affect the PE array functionality in any way.

4.3 Hardware Prototype
For our hardware prototype, we were limited to the use

of low-tech components due to severe budget constraints.
A parallel port was used as the communication channel be-

(a) Cloth with 6 sub-
divisions

(b) Cube with 4 sub-
divisions

Figure 7: Snaphots of models simulated using the
software prototype

tween the host Linux system and the prototype. The pro-
totype system’s clocks are generated directly from parallel
port control signal pins, greatly limiting the prototype sys-
tem’s maximum clock frequency. The chip accepts 32 bits of
data and produces 32 bits of data per clock cycle. Data be-
tween the host and prototype systems are multiplexed four
bits per clock cycle, further limiting the rate at which the
chip itself can be clocked. As a result of these constraints,
the prototype’s clock frequency is 16.1 KHz.

Physically, the prototype system consists of three parts:
input subsystem, the chip, and output subsystem. The
input subsystem includes eight four bit registers, indepen-
dently controlled to latch the multiplexed input data. The
output subsystem is four eight-to-one multiplexers. Both
subsystems use voltage converters to convert between the
parallel port’s TTL voltage levels and the 1.8 V levels of
the chip. The entire system was breadboarded with discrete
wires. The chip uses a 1.8 V power supply. At the test sys-
tem’s low clock frequency of 16.1 KHz, chip current draw
was unmeasurable. Figure 6 illustrates the block diagram
and the actual implementation of the prototype. Currently
we are running regression tests to check the correct opera-
tion of the fabricated chips. We intend to use these chips to
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demonstrate sample animation sequences using simple mod-
els.

Our philosophy behind this prototype has been to design
a small proof-of-concept system to demonstrate the viabil-
ity of HELLAS and not to develop a high-performance im-
plementation. Once this viability has been established, we
plan to focus on building a second generation system that
would focus primarily on high performance. However, it is
clear that as the number of streaming floating-point units
on HELLAS are increased, the performance obtained would
likely be much higher than that provided by general-purpose
systems.

5. CONCLUSIONS AND FUTURE WORK
A number of lessons were learned during the design of

HELLAS and from our analysis using the simulator which
allow us to point to future research directions in this area.
Recall that deformable object simulation consists of two
loops - the outer loop which linearizes the PDEs and the in-
ner, solver loop which performs matrix operations (Section
2). From our analysis, we found that it would be difficult
to achieve high performance by accelerating only the inner
loop in hardware because the I/O overhead for every sim-
ulation iteration would dominate the total execution time.
Recent work which proposes the use of Graphics Process-
ing Units (GPUs) (for example, NVIDIA’s GeForce FX) for
accelerating sparse linear solvers [7] is also likely to suffer
from such high I/O overhead. Hence, both the loops need
to be implemented in hardware to achieve speed-up. How-
ever, we found that the control memory in our current im-
plementation was insufficient to handle the large number of
instructions to support both the loops. Thus, increasing the
control memory size would be a priority in designing future
generation systems.

The efficiency of HELLAS also depends on the fraction
of PEs that are actively involved in computations in any
given cycle. This, in turn, is determined by the schedule
of operations provided to the array by the host machine.
In future systems, we plan to focus on algorithms that can
provide an efficient mapping of a large class of applications
onto HELLAS such that the array utilization is maximized.

In summary, the eventual goal of the HELLAS project is
to develop a complete, specialized physical modeling system
that can be plugged in to consumer systems to allow inter-
active deformable object modeling. Lessons from the cur-
rent implementation indicate that off-chip communication
is likely the most important bottleneck to achieving high
performance as model complexity is increased. We intend
to explore new architectures that will allow us to reduce
off-chip transfers by downloading the entire simulation loop
(and not just the sparse system solver) to the specialized
processor. We also plan to focus on exploring new appli-
cations and compiler support for automatic porting to the
HELLAS ISA.
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Hellas is the historical name of the country Greece. The
HELLAS architecture was named so because it is a second
generation system to an earlier FPGA–based implementa-
tion which was called SPARTA (which is the name of one of
the first cities in ancient Greece).
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