
An Analysis of Interactive Deformable Solid Object
Modeling

Shrirang Yardi
Department of Electrical and

Computer Engineering
Virginia Tech

Blacksburg, VA
yardi@vt.edu

Benjamin Bishop
Department of Computing Sciences

University of Scranton
Scranton, PA

bishop@cs.uofs.edu

Thomas P. Kelliher
Department of Mathematics

and Computer Science
Goucher College
Baltimore, MD

kelliher@bluebird.goucher.edu

Abstract— Interactive deformable object modeling is im-
portant for a number of application areas. Unfortunately,
computational complexity quickly grows beyond the capa-
bilities of consumer systems as model detail increases. Our
first contribution is to analyze this application, and present
details that might aid in optimizing existing algorithms
or in developing new ones. Our second contribution is
to provide source code that should be useful in future
research.

I. INTRODUCTION

Interest exists in deformable object modeling
for a number of interactive applications. These
applications include: surgical simulation, electronic
entertainment, wargame simulation and others. In-
teractive simulation is difficult because the simu-
lation must be advanced under real-time contraints.
Current systems available to consumers offer far less
performance than required for simulating detailed
objects.

Our research focuses on accelerating these sim-
ulations through the use of specialized hardware
systems. In order to acheive this goal, we have
completed a number of simulations to better un-
derstand the computational characteristics of these
algorithms1. In this paper, we present the results
of our simulations. Additionally, we provide open
source code for our implementation of the de-
formable object simulation. Although these algo-
rithms are described elsewhere, we have found
implementation to be non-trivial, and we have not

1We discuss the rationale for choosing the particular algorithm in
later sections

found any very general public source code for an
existing implementation.

II. PRIOR WORK

A number of methods exist for representing and
animating deformable objects. [1] provides a survey
for some of the more mature techniques used in
graphics. However, modeling deformation is not
unique to graphics. It is intuitive to consider sim-
ilar techniques as those used to model structural
deformation (of bridges for example). However,
the requirements of interactive graphics may differ
significantly from that of structural engineering. In
interactive simulation, we wish to guarantee stability
and performance, usually at the expense of accuracy.

It is fairly trivial to develop a deformable object
simulation using explicit integration such as the
forward Euler method [2]. However, this approach
is not well-suited for interactive simulation. If large
uniform time steps are used, real-time performance
can be assured, but the simulation is very likely
to diverge. If an adaptive step-size is used, the
simulation may be stable, but we cannot guarantee
that we will meet our real-time constraints.

In [3], Baraff et al. describe a simulation method
especially suited for cloth simulation. Cloth tends
to be difficult to simulate efficiently due to object
stiffness against stretch forces. Their approach is
to apply implicit integration in order to allow for
stability over large time steps. Since the goal is to
produce visually pleasing results, accuracy may be
sacrificed.



III. CURRENT WORK

In our work2, we have adopted the algorithms
described in [3]. The justification for using these
algorithms is supplied in that paper. The model is
a series of mass points connected by deformable
springs. Applying implicit integration, and convert-
ing the system of equations as in [3], we are left
with a large sparse linear system. We then apply
the Conjugate Gradient method [4] to produce our
solution.

In order to analyze the simulation, we must also
generate reasonable deformable objects to model.
We have produced two models that are intended to
be representative of the range of models that one
might wish to simulate. The “cloth” model is a
simple two dimensional mesh. The “cube” model is
generated from a three dimensional uniform grid of
points. Each point is connected with springs to the
26 points bordering it (except for boundary points).
Models are generated automatically, which allows
for an arbitrary level of detail to be supplied by the
user.

These models are representative in the sense that
they establish bounds on the expected structure of
realistic models to be simulated. We expect that
there are few useful models that are more simplistic
(in terms of spring topology) than our cloth. Even
with cloth, we may wish to add springs in order to
model forces opposing folding. We expect complex
three dimensional objects to behave similarly to
our “cube” model. For these objects, an intuitive
approach would be to model them as a mass-spring
system by fitting the complex object to a three
dimensional mesh (similar to the cube). Mesh points
contained in the complex object would be retained,
others would be discarded. We believe that this
approach allows us to approximate the behavior of
complex three dimensional objects using our “cube”
model. Figures 1(a) and 1(b) show the structure of
the “cloth” and “cube” models respectively. Fig-
ures 2(a) and 2(b) show the resulting linear system
sparsity patterns for the same models.

A relatively simple gravity-driven simulation was
used. For the “cloth” simulation, the position of one
edge of the cloth was constrained, and no collision

2Our source code is available under the BSD License at http:
//www.cs.uofs.edu/˜bishop/spring.tar.Z

detection was applied. For the “cube” simulation,
simplistic collision detection relative to a static floor
was used. Collisions were resolved using control
points – additional points connected to model points
by zero-length stiff springs. Sample graphic output
from simulating the “cloth” model is presented in
Figure 3.

IV. RESULTS

Each of our simulations was run using a range of
model complexity. This allows us to draw conclu-
sions about how the simulation complexity scales
with object detail.

One of the important factors that we considered
was the amount of memory that the computation
requires. This is important because delay increases
rapidly as additional levels of the memory hierarchy
are accessed. Figure 4(a) shows the memory foot-
print for various models. Figure 4(b) shows the same
figure per spring of the model. From figure 4(a) we
can see that the growth in memory utilization is
highly dependent on the type of model. Our “cube”
model grows in complexity much more rapidly than
the “cloth” model. However, figure 4(b) shows that
memory required is almost constant per spring (with
some startup overhead that becomes less important
as the number of springs grows).

Another important result is the number of floating
point operations (FLOPS) required for each iteration
of the simulation (which includes many iterations of
our iterative linear system solver). Figure 5(a) gives
the number of floating point operations per iteration.
Figure 5(b) gives the same figure per spring in the
model. As with our memory figures, we see that
computational complexity is highly dependent on
model complexity. The number of floating point
operations becomes roughly constant per spring as
complexity increases, as shown in figure 5(b).

We have also produced figures showing the break-
down of floating point instructions used in these
calculations. However, these figures are based on the
Instruction Set Architecture (ISA) for our particular
specialized processor. The results may be slightly
different for other ISA’s. Figure 6 shows these
results.



(a) Cloth model with 6 subdivisions (6x6
mesh)

(b) Cube model with 4 subdivisions (4x4x4
mesh)

Fig. 1. Simulated models
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(a) Cloth model with 6 subdivisions (6x6 mesh)
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(b) Cube model with 4 subdivisions (4x4x4 mesh)

Fig. 2. Sparsity patterns for models

V. CONCLUSION

Our results show that the computational complex-
ity (in terms of FLOPS required) of the simulations
remains constant per spring. However, computa-
tional complexity of the entire simulation grows
rapidly with model complexity. This problem is
further compounded by the growth in the memory
requirements of the simulation as detail increases.
As a result, we conclude that executing these sim-
ulations interactively will remain impractical unless
other approaches are discovered.
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Fig. 3. Example simulation
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Fig. 4. Memory utilization
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Fig. 5. Floating point operations
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