Conf erence: MV ' 06

Title: Devel opnent and Analysis of an Interactive Physical Modeling
Benchmar k Set

Aut hor s:

Dar | ene Bant a

Dept. of Conputing Sci ences

Uni versity of Scranton

Scranton, PA

bant ad2@cr ant on. edu

Brenda Al di ne

Dept. of Conputing Sci ences
Uni versity of Scranton
Scranton, PA

al di neb2@cr ant on. edu

Benj ami n Bi shop (Presenting Author)
Dept. of Conputing Sciences

477 St. Thomas Hal

Uni versity of Scranton

Scranton, PA

bi shop@s. uof s. edu

(570)941- 6115 (phone)

(570)941- 4250 (fax)

Development and Analysis of an Interactive
Physical Modeling Benchmark Set

Darlene Banta
Dept. of Computing Sciences
University of Scranton
Scranton, PA
bantad2@scranton.edu

Abstract— The goal of this work is to gain an under-
standing of the execution characteristics of certain inter-
active simulations. In order to achieve this, we collected
a small benchmark set of physical modeling simulation
applications 1. We then extended these to include a user-
specified level of detail parameter. Lastly, we explored the
behavior of these applications through the SimpleScalar
processor simulator.

I. INTRODUCTION

Recently, there is a great deal of interest in
physical modeling applications [7], [8]. However,
these simulations are generally non-interactive or
limited to relatively simple scenes due to lack of
computational performance.

Therefore, our research focuses on developing
a benchmark set of interactive physical modeling
applications and then ascertaining the optimal ar-
chitecture resources for these applications. From
this knowledge, one can better develop specialized
hardware systems to run these physical modeling
applications. To gather data regarding various hard-
ware resources, we have executed the applications
on an architecture simulator.

I1. PRIOR WORK

There exist a variety of approaches to represent
and animate physical models. This paper studies
interactive simulations. Interactive simulations aim
to provide stability and performance rather than ac-
curacy. The applications included in the benchmark
set are a fluid modeling application, NaSt3DGP [1],

1Source code is available upon request.

Brenda Aldine
Dept. of Computing Sciences
University of Scranton
Scranton, PA
aldineb2@scranton.edu

Benjamin Bishop
Dept. of Computing Sciences
University of Scranton
Scranton, PA
bishop@cs.uofs.edu

a collision detection application, SWIFT++2 [2], and
a deformable solid modeling application (cloth and
cube) [3].

NaSt3DGP *“is a parallel 3D flow solver for
the incompressible, time-dependent Navier-Stokes
equations” [1]. It was developed at the division of
Scientific Computing and Numerical Simulation at
the University of Bonn. NaSt3DGP can be used for
simulations such as thermal convection, flow past
an obstacle and free surface flow. Figure 1 provides
screen shots from a NaSt3DGP simulation of flow
past an obstacle [4].

SWIFT++[2] was developed at the University
of North Carolina at Chapel Hill as an extension
of SWIFT [5]. SWIFT++ implements collision de-
tection, tolerance verification, approximate distance
computation, exact distance computation and con-
tact determination.

In [3], we developed a deformable solid object
model with a gravity driven simulation to simulate
both a cloth and a cube. The cloth and cube are
composed of a series of mass points connected by
deformable springs [3]. A cloth model was chosen
to represent a simple two-dimensional mesh and
a cube model was chosen to represent a three-
dimensional mesh. Figure 2 illustrates the cloth
simulation. In the simulation, the position of one
edge of the cloth is constrained. The cube simulation
has simple collision detection with a static floor.
In [3], results regarding the memory footprint and
amount of floating point operations required for both

2We are currently in the process of porting SWIFT++ to sim-
plescalar

the cloth and the cube were discussed. We have
extended this research to include branch prediction
and cache data.

We decided to use the SimpleScalar [6] archi-
tectural simulator developed by Todd Austin at the
University of Wisconsin in Madison. SimpleScalar
provides both stability and flexibility. It has been in
development since 1994 and has been widely used
in computer architecture research. SimpleScalar in-
cludes both functional simulators to implement the
architecture and performance simulators to imple-
ment the microarchitecture.

I11. CURRENT WORK

Prior to executing the applications on the sim-
ulator, we developed a benchmark set of physi-
cal modeling applications that includes NaSt3DGP,
SWIFT++, and the cloth and cube simulations. In
our work we have built the SimpleScalar simulator
for an i386-freebsd system and then modified and
run the applications discussed above on the Sim-
pleScalar simulator.

Currently SWIFT++ is being ported to Sim-
pleScalar and both NaSt3DGP and the cloth and
cube have been successfully executed on the sim-
ulator. Thus, this paper presents the data collected
regarding NaSt3DGP and the cloth and cube.

In order to understand the effect of increasing
scene complexity on the execution behavior of the
applications, we introduced a user-specified level
of detail parameter for each application. In the
case of NaSt3DGP, this scalable factor modified
the resolution and the coordinates of the box. A
simple NaSt3DGP simulation has fewer gridpoints
and obstacle cells involved in the simulation. An
increase in the amount of gridpoints and obstacle
cells creates a more realistic simulation but may
degrade performance. The cloth and cube applica-
tion was developed with scalable complexity at run-
time. The complexity factor, based on the number
of subdivisions, varies the number of points and
springs.

Because the computational complexity increases
at varying rates between NaSt3DGP, the cloth, and
the cube, we were able to collect a greater amount
of data points for NaST3DGP and the cloth than for
the cube. We developed a complexity scale of 1-100
to provide a uniform measurement of complexity;

1 represents minimal complexity, 100 represents
maximal complexity and all values in between are
scaled accordingly.

To run the applications on the SimpleScalar sim-
ulator, they were cross-compiled using the Portable
Instruction Set Architecture (PISA) SimpleScalar
cross-compiler. NaSt3DGP execution includes both
physical modeling calculations and saving these
calculations to a file. We are interested solely in
the calculation costs of the application. Therefore,
the unnecessary file write commands were removed
from NaSt3DGP. Additionally, NaSt3DGP requires
the math library libm.a. Therefore, we needed to
build SimpleScalar’s glibc-1.09. SimpleScalar’s li-
braries do not include the OpenGL library; therefore
all OpenGL calls were removed from the cloth and
cube application.

Each application was run on SimpleScalar us-
ing sim-bpred to collect branch prediction data,
sim-profile to find the instruction breakdown and
sim-cache to gather cache and memory footprint
information. Sim-bpred allows users to specify
the branch predictor and predictor table size. The
branch predictors available are not taken, taken,
perfect, bimodal, 2-level adaptive and combined
bimodal and 2-level adaptive. Within the 2-level
adaptive predictor, the number of entries in the first
and second level tables, the history size, and xor,
which xors the history and the address in the second
level table, can be modified. Therefore, using the 2-
level adaptive predictor, global branch history such
as GAg and GAp, local branch history such as PAg
and PAp, and gshare can be simulated.

IV. RESULTS

The results presented in this paper focus on
branch prediction, instruction profiling, cache miss
rates and memory footprints®.

Using sim-bpred, we executed applications from
our benchmark set with bimodal and gshare branch
predictors with table sizes from 1 to 4096 in powers
of 2 4 However, the gshare predictor table size
cannot be 1 since the table size is 2 to the W power
where W is the size of the history table and W

3We are also working towards analyzing the maximum available
parallelism in the applications.

4This paper does not include data regarding the combined branch
predictor; we suspect it’s parameters were not set correctly.

(@) frame 0

(c) frame 2

Fig. 1.

(b) frame 1

(d) frame 3

NaSt3DGP Simulation

Fig. 2.

cannot equal zero. Therefore the gshare table size
ranges from 2 to 4096.

The optimal branch predictor table size was the
first important factor studied. Therefore, a represen-
tative complexity of each application was chosen.
Then each application was executed on the simula-
tor with a constant complexity for various branch
predictors and table sizes.

Cloth Simulation

For NaSt3DGP a complexity of 75 to study the
optimal predictor table size was used. Based on
Figure 3 the bimodal predictor has the greatest
miss rate for predictor table sizes greater than 128
entries. However, for predictor table sizes smaller
than 128 entries the bimodal predictor performs
slightly better (approximately 2 percent) than the
gshare predictor. The miss rate does not decrease

NaSt3DGP - level of detail 75
Branch Predictor Miss Rates

35% —+- bimodal
30%
—#- gshare
25%
=
S 20% =
w B
= ‘\?\O—H_.
10% e
g o
5%
OQID T T T T T T T T T T T T
1 4 16 64 256 1024 4096
Table Size (#entries)
Fig. 3. NaSt3DGP Branch Prediction Increasing Table Size

Cloth - Level of Detail 57
Branch Predictor Miss Rates

4.0%

- —o— bimodal

NI
NX

3.5%

-#-gshare

3.0%

25%

2.0%

Miss Rate

TR
N
NN
\‘\0—::#-—-—'—9—-

16 32 64 128 256 512 1024 2048 4096
Branch Predictor Table Size (#entries)

1.5%

1.0%

0.5%

0.0%

1 2 4 g

(@) Cloth

Cube - Level of Detail 67
Branch Predictor Miss Rates

:

Nk
ANN

N

T T T T T T T T T T T

16 64 256 1024 4096
Branch Predictor Table Size (#entries)

2.5%

—o— bimodal
2.0%

-=-gshare

1.5%

Rate

1SS

M

1.0%

0.5%

0.0% T

(b) Cube

Fig. 4. Cloth and Cube Branch Prediction for Increasing Table Size

below approximately 7 percent. We suspect that
NaSt3DGP has data dependent branches; thus, the
branch prediction ability is limited.

A complexity of 57 for the cloth simulation and
of 67 for the cube was used. As illustrated in
Figure 4(a) and Figure 4(b), each predictor has a
different table size for which the miss rate no longer
improves. Therefore, each predictor has varying
points of diminishing returns. Thus, for the cloth

simulation, the optimal predictor table size for a
bimodal predictor is 32 and for gshare is 256. For
the cube simulation, the optimal predictor table size
for a bimodal predictor is 32 and for gshare is 128.
In contrast to NaSt3DGP, both the cloth and cube
simulations have a table size where bimodal and
gshare perform similarly.

We then considered the miss rates for each
application depending on various levels of detail

Branch Predictors - Size 32 Miss Rates
for Increasing NaSt3DGP Complexity

25%

20%

_\
a
R

-+ Bimodal

10%

-= gshare

Miss Rate

5%

0% +———

1 10 20 30

40 50 60 70 80

90 100

Level of Detail

Fig. 5.

Branch Predictors - Size 32 Miss Rates
for Increasing Cloth Ci

35%
-6— Bimodal

30% A

-=- gshare
25%

M
o
®

Miss Rate

o
#

o
&

Iz
®

o
®

1 8 15 22 29 36 43 50 57 64 T
Cloth Level of Detail

78 85 92 100

(@) Cloth

Fig. 6.

within each application. Figure 5, Figure 6(a), and
Figure 6(b) depict these results. Bimodal and gshare
predictors with predictor table size 32 were used.

As evidenced in Figure 5, the bimodal and gshare
predictors behave differently as the complexity of
NaSt3DGP increases. As the level of detail in-
creases, at every 5th level of detail, the bimodal mis-
prediction rate decreases. In contrast, as the level of
complexity increases, the gshare predictor reaches
a steady miss prediction rate of approximately 22
percent.

Branch Prediction Increasing NaSt3DGP Complexity

Branch Predictors - Size 32 Miss Rates
for Increasing Cube Complexity

30%

—— Bimodal

25%

—=—gshare

20%

4
0
=

Miss Rate

10%

5%

0%

34 50 67
Cube Level of Detail

83

(b) Cube

Cloth and Cube Branch Prediction for Increasing Complexity

In Figure 6(a) and Figure 6(b), as the level of
detail increases for the cloth and cube applications
the miss rate approaches zero; it remains between
.1 percent and .5 percent with a level of detail
of 100. We can thus conclude that the cloth and
cube applications’ branch prediction is rarely data
dependent and easy to predict.

Another important result is the instruction profile.
Figure 7 illustrates that NaSt3DGP uses double
values rather than floats; we decided to leave the
application as originally developed. We realize that

Double-Precision
Subtract
3%

Other
34%

Double-Precision
Multiply
5%

Load Word
12%

Fig. 7.

(@) Cloth

Fig. 8.

our benchmark set ideally would contain interactive
simulations; therefore, float values are expected over
double values because the goal is stability over
accuracy. As evidenced by Figures 8(a) and 8(b) the
cloth and cube have analogous instruction profiles.
Similar to NaSt3DGP, the percentage of double and
integer arithmetic operations is similar.

The size of the level one data cache plays an
important role in application execution. NaSt3DGP
and the cloth and cube simulations were executed
on sim-cache using the default cache parameters; the
cache size remained constant as the complexity was

Double-Precision Add

8%

Immediate Add
Unsigned
6%

Integer Add Unsigned
12%

AND Immediate
3%

Branch ==0
4%
Double-Precision
Divide
4%

Load Double-Precision

9%

NaSt3DGP Instruction Profile

Single-Precision
Set Less ThaR oo Single-Precision Add

Store Single-Precision Immediate Add

Unsigned

7%
Integer Add Unsigned
10%

Beanch 1« 0
3%

12%

ingle-Precision Multipl
1%

Load Word

10%
Other
14%

Load Single-Precision
FP

(b) Cube

Cloth and Cube Instruction Profile

increased. Figure 9 illustrates continuous fluctuation
between approximately 7 percent and 10 percent in
the miss rate of the level one data cache as the
complexity is scaled for NaSt3DGP. However, in
the cloth and cube simulations (Figure 10(a) and
Figure 10(b)), the miss rate is extremely low initially
but then increases to over 20 percent as the level of
detail increases. With low levels of detail, the cloth
and cube simulations do not produce enough data
to fill the cache.

It is also interesting to study the memory foot-
print of these applications as the level of detail

#

Miss Rate

Fig. 9.

10%
9%
8%
7%
6%
5%
4%
3%
2%
1%
0%

NaSt3DGP Data Cache Level 1 Miss Rate

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Level of Detail

Cloth Data Cache Level 1 Miss Rate

) 1%

xn

29

30%
25%
20%
15%
10%

Miss Rate

5%

0%
¥ 4 0

Level of Detail

(@) Cloth

Data Cache Level 1 Miss-Rate Increasing NaSt3DGP Complexity

Cube Data Cache Level 1 Miss Rate

17 34 50 67
Level of Detail

(b) Cube

Fig. 10. Cloth and Cube Data Cache Level 1 Miss-Rate Increasing Complexity

Size Memory Pages Allocated (k)

1500
1400
1300 ¢

NaSt3DGP Memory Footprint

20— —

1100
1000 -+

>

800 ¢
700 +
600
500 -+

Fig. 11.

1 5 10 15 20 25 30 35 40 45 50 55 60 65
Level of Detail

Memory Footprint Increasing NaSt3DGP Complexity

Cloth Memory Footprint

12000

10000 //
8000 /
6000 J
1 8 15 22 29 36 43 50 57 64 71 78 85 92 100
Level of Detail

k)

4000

2000

Size Memory Pages Allocated

(@) Cloth

Fig. 12.

changes. Figure 11, Figure 12(a), and Figure 12(b)
all illustrate that as the level of detail increases,
the size of the memory footprint also increases.
The size of the memory footprint increases almost
linearly for NaSt3DGP; whereas the size of the
memory footprint for the cloth and the cube in-
creases exponentially once reaching a certain level
of detail. Figure 12(a) illustrates unexpected be-
havior, an extreme increase in memory footprint
between complexity level 57 and 64 and complexity
level 85 and 92. These values were verified as the
accurate values produced by the simulator; however
we currently cannot explain this behavior.

V. CONCLUSION

We have made available a benchmark set for
interactive simulation. It is possible to easily scale
the level of detail in these simulations in order to
simulate more complex scenes, and to understand
how execution behavior changes as simulation com-
plexity increases.

We have also produced detailed execution results.
Interesting observations include the differences in
branch predictability between the fluid dynamics
simulation and deformable solid objects, the rate at
which memory requirements increase with level of
detail, differences in instruction execution behavior
between the different applications, and the impact
of level of detail on cache behavior.

Cloth and Cube Memory

Size Memory Pages Allocated (k

30000
25000 »
20000 /
15000

10000

Cube Memory Footprint

5000

1 17 34 50 67 83

Level of Detail

100

(b) Cube

Footprint Increasing Complexity

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

REFERENCES

M. Griebel, T. Dornseifer and T. Neunhoeffer “Numerical Sim-
ulation in Fluid Dynamics, a Practical Introduction,” SIAM,
Philadelphia, 1998.

S. Ehmann “Speedy Walking via Improved Feature Testing for
Non-Convex Objects”, http://www.cs.unc.edu/~geom/
SWIFT++/.

S. Yardi, B. Bishop, T. Kelliher “An Analysis of Interactive
Deformable Solid Object Modeling”, Conf. on Modeling, Smu-
lation & Mis. Methods, pages 95-99, 2005.
http://wissrech.iam.uni-bonn.de/research/
projects/NaSt3DGP/Movies/mov_PastObstacle.
mpg.

S. Ehmann “Speedy Walking via Improved Feature Testing”,
http://www.cs.unc.edu/~geom/SWIFT/.

D. Burger, T. Austin "The SimpleScalar Tool Set, Version 2.0”,
http://simplescalar.com/docs/user_guide_v2.
pdf, 1997.

B. Feldman, J. O’Brien, B. Klingner, “Animating gases with
hybrid meshes”, Proceedings of ACM S GGRAPH, pages 904-
909, 2005.

E. Guendelman, A. Selle, F. Losasso, R. Fedkiw, “Coupling
Water and Smoke to Thin Deformable and Rigid Shells”, Pro-
ceedings of ACM SSIGGRAPH, pages 973-981, 2005.

