Course Description: (Co-requisites: CMPS 144 and IT 210) The application of information technologies presents many situations where systems and applications, that were not initially designed to work together, need to do so. This course introduces students to commonly used representations, languages, interfaces, models and practices pertinent to such integrative situations. Students will gain experience using and developing software to accomplish integration. The course also presents an overview of programming languages, presenting both a conceptual foundation and a survey of relevant scripting languages. (Essentially from Undergraduate Catalog 2016-2017)

Student Learning Outcomes: At the completion of this course the successful student will:

1. Be able to explain and evaluate numerous representation schemes used for data, metadata, specifications, designs and programs.
2. Have experience using at least one application programming interface to develop integrative software.
3. Have experience using at least one scripting language to develop integrative software.
4. Be able to explain and make use of middleware in distributed computing systems.
5. Be able to explain client-server architectures and develop both server-side and client-side software components.
7. Be knowledgeable of numerous programming languages and their application and be capable of readily learning new languages that appear.
8. Be able to explain lexical analysis and use regular expressions to describe lexical patterns.
9. Gained awareness and appreciation of a variety of Standardization Organizations relevant to Information Technology, and of some of the most important prevailing standards.
10. Gained experience investigating established and emerging topics pertinent to Information Technology practitioners and in sharing and extending learned knowledge with collaborators.

Texts: None required.

Course Web Site: http://www.cs.scranton.edu/~jackowitz/public/Spring2017/it244/page.html
(This page serves as our primary electronic communication tool for this course. You will use it to access required and optional course material, submit assignments for grading, and receive feedback. You must register to gain access to the functionality of this site.)
GRADING:

Tests: *(approximate date)*
- Week of March 6th: 10%
Final Exam: *(comprehensive, and yet to be scheduled)*: 10%
Quizzes: *(as announced)*: 0%-10%
Discussions: *(preparation, contribution, participation)*: 40%
Assignments:
 - Programming, homework, etc.: 30%
Project/Report/Presentation: 0%-10%

Attendance and Class Participation considered.
(Your attendance at all classes is expected. The accumulation of more than four absences may result in a diminished final course grade.)

PROCEDURES:

Lectures:
- please sit in the same seat for every class
- feel free to ask and answer questions, and to contribute to discussions

Tests and Quizzes:
- always announced in advance
- no make-ups will be given
- notice must be given if a test must be missed due to serious illness or emergency

Assignments:
- each student is required to do his/her own work
- discussions and cooperation among students is encouraged, but must not be to the point of representing someone else’s effort as your own
- academic dishonesty will be dealt with severely
- each assignment will have a specified due date, and a deadline (approximately 3 calendar days hence)
- work submitted after the due date is considered “late”, will be accepted for grading but may be assessed a penalty (depending upon how late it is, and whether or not worthwhile preliminary work had been submitted by the due date).
- work may not be submitted after the deadline, is considered too late, may not be accepted for grading, and may receive a grade of zero (depending upon whether or not worthwhile preliminary work had been submitted by the deadline).
- incomplete work generally will receive a grade much higher than zero
- work not submitted will receive a grade of zero