

 A Guide to Cup

 SIRAI, Hidetosi

 School of Computer and Cognitive Sciences

 Chukyo University

 Tokodate 101, Kaizu-cho, Toyota, Aichi, 470--03 JAPAN

 E-mail: sirai@sccs.chukyo-u.ac.jp

 Version 0.80d (1993-09-01)

1. Introduction

 CUP (or, cu-Prolog), which is an experimental constraint logic

 programming (CLP) language, originally developed for use on

workstations such as SUN4. Unlike most conventional CLP systems,

CUP allows user-defined predicates to be

used as constraints, and is suitable for implementing a natural language

processing system based on unification-based grammar formalisms.

As an application of CUP, we have developed a parser based on JPSG

theory (Japanese Phrase Structure Grammar) with the JPSG Working Group

(chaired by Prof. Takao Gunji of Osaka University) at ICOT.

 CUP was developed at ICOT. The base mechanism is called

`Constraint Unification' (CU), and developed by Dr. Hasida. Sirai

first implemented its prolog version, then Mr. Tsuda developed cu-Prolog

entirely written in C. He and the author have revised it, and MacCup was

written especially for Macintosh.

 ICOT has the copyright of cu-Prolog, and distributes the source and

binary

object.

2. CUP Programming

2.1 Distinctive feature of CUP

 The programming style is almost same with that of DEC10 Prolog.

However CUP has several different features from it as follows:

 (1) Constrained Horn Clause is supported.

 (2) Partially Specified Term (PST) is supported.

 (3) Operator `;' has a differnt meaning. It does NOT mean OR

predicate. In CUP, it is used as a separator between the body part and

the constraint part. Disjunctive control structure is written by using

or/2,

or/3, or/4, and or/5 predicates.

 For example, the following program in usual Prolog

 (a(X), a1(X), a2(X)) ; (b(X), b1(X)) ; c(X)

 can be written in CUP as follows:

 or((a(X), a1(X), a2(X)), (b(X), b1(X)), (c(X)))

 or

 or([a(X), a1(X), a2(X)], [b(X), b1(X)], [c(X)]).

2.2 How to Start and Quit

 To start CUP, type the following:

 cup [CR]

 or

 cup <file_name> [CR]

 To quit it, there are three ways:

 CMND+Q

 or %Q [CR]

 or :-halt. [CR]

2.3 Memory Allocation of CUP

 CUP uses the following data areas:

 SHEAP : (400K cells) storage area for user-defined programs

 HEAP : (150K cells) temporal storage area

 CHEAP : (800K cells) working area for processing constraints and

PSTs

 ENV : (100K cells) environment for variables' binding

 USTACK: (30K cells) storage area for everything

 NAME : (100K bytes) storage area for strings

The numbers in the parenthes show their default sizes. However the user

can change its size by providing extra arguments for `cup' command.

 cup [-s <n>] [-h <n>] [-c <n>] [-e <n>] [-u <n>] [-n <n>] [file]

2.4 Top level of CUP

 At the top level of CUP, you will see a prompt `_'. Here you can

do the following things:

 (1) Write programs with/from the keyboard. All Horn clauses inputted

from the keyboard are defined as user-defined predicates except that

there are no system-defined predicates whose both name and arity are

same.

 e.g. _ member(X,[X|_]). ==> a definition of `member' is defined.

 (2) Execute programs. When you input a sequence of literals

following `:-', it is evaluated as a CUP program.

 e.g. _ :- member(X,[a,b,c]). ==> evaluation of member.

 (3) Transform constraints. When you input a sequence of literals

following `@', it is transformed into some normal form.

 e.g. _ @ member(X,Y), append(Y,U,V).

 (4) Execute CUP commands. Some keywords following a `%' are

dealt with as CUP commands.

2.5 Running CUP Programs

 There are two standard ways when you develop CUP programs:

 (1) Input CUP programs from the keyboard, run them, and

debug them. After verifying them, save them into a file.

 (2) Make a CUP program file with some editor such as Emacs.

Then call CUP, load a program file, execute the program,

debug it. After that, you can save it into a file, or edit the program

file.

 In order to load programs from a file, there are two ways:

 (a) At the top level, input the name of file enclosed by double quote

 signs `"', or

 (b) Providing the file's name for `cup' command.

To save a program into a file, there is the following way:

 (a) Use CUP command `%w' with file name.

 Sometimes you may lose a control over CUP. However there is a

chance to recover the contorl by pushing `c' with the control key. Then

you will see the following message:

Interrupt --- Input <T(race),C(ontinue),A(bort)>?

If you type C, CUP continues the current process.

If you type T, CUP goes into the step trace mode.

If you type A, CUP quits the current process, and returns to the top

level.

2.6 Syntax of CUP Program

 There are two types of Horn clauses in CUP, that is, conventional

Horn clauses and Constrained Horn clauses. Furthermore, each Horn clause

may be classified into three kinds as follows:

 (1) Facts. They are written in the following way:

 H. or

 H ; C1, ..., Cn.

 e.g. human(socrates).

 lexicon(put, {pos/v, form/X, infl/Y}) ; agreement(X,Y).

 (2) Rules. They are written in the following way:

 H :- B1, ..., Bm. or

 H :- B1, ..., Bm ; C1, ..., Cn.

 e.g. append([],X,X).

 cat(Mother) :- cat(Left), cat(Right) ; psr(Mother,Left,Right).

 (3) Queries. They are written in the following way:

 :- B1, ..., Bm. or

 :- B1, ..., Bm ; C1, ..., Cn.

 e.g. :- permutation(X,[a,b,c]), well_orderd(X).

 :- choice(X), good(X) ; memb(X, [a,b,c,d,e]).

3. CUP Commands

 In this section, CUP commands are introduced. Most of them have

the correspondents in CUP menu. In the below, PRED represents a

predicate name, or a combination of the name and its arity such as psr/3,

NUM represents a number, especially positive integer in most cases, and

NAME represents a name atom.

3.1 General Commands

 (1) %h Help. Shows the table of CUP commands.

 (2) %d PRED Shows the definitions of the predicates PRED.

 %d * Shows the definitions of all predicates.

 %d ? Shows the names of predicates.

 %d - Shows the definitions of user-defined predicates.

 (3) %f Shows the current status of memory usage.

 (4) %Q Quits CUP.

 (5) %R Initializes CUP.

 (6) %c NUM Sets the maximum depth of refutations. If the process

 comes deeper than this, it fails.

 (7) %u Switches the handling of undefined predicates between

 fail and error. Initially it is set to fail.

 (8) %n NAME Sets the core of new generated names in the constraint

 transformation and/or the process of gensym. Initially

 it is set to `c'.

 (9) %T Switches the timer between off and on. Initially it is

 ON. When it is on, each time a process is done, the

 consuming time (seconds) is shown.

 (10) %I AREA/NUM (NOTE: only for UNIX version)

 Increase the temporal work area by the

 designated number (note. the unit is K cell). And

 AREA should be either c, h, u, or e.

 'c' means the work space for constraints and pst, 'h'

 means the heap, 'u' means the user stack, and 'e' means

 the environment save space. Thus when you write %I

h/200,

 the heap space will increased by 200K.

3.2 File I/O

 (1) "File Name"

 Loads a program from the file `File Name'.

 (2) "File Name?

 Loads a program from the file `File Name' with

 showing the content.

 (3) %l Sets a log file.

 (4) %w Writes the current defined programs into a file.

3.3 Debugging

 (1) %p PRED Sets/Removes a spy flag onto the predeicate PRED.

 %p * Sets spy flags onto all user defined predicates.

 %p . Removes spy flags from all predicates.

 %p > Sets/Removes a spy flag onto the constraint transformation

 process.

 %p ? Shows the names of predicate which are set spy flags.

 (2) %t Sets up/Cancels the trace mode.

 (3) %s Sets up/Cancels the step trace mode.

 The prompt tells what mode the system is. For example, the

 prompt is `_' in no trace mode, `$' in the trace mode, and

 `>' in the step trace mode.

3.4 Constraint Transformation

 (1) %L Shows all generated predicates during the constraint

 transformation.

 (2) %M NUM Sets the maximum number of variables used in one process

 of constraint transformation. In a pathological case,

 the constraint transformation may go into inifinite loop.

 By setting the maximum number of variables may prevent

 CUP into such a trouble.

 (3) %P PRED Preprocesses PRED's constraint part, that is, the

constraint

 part of predicate PRED is transformed into `modular' form.

 %P * Preprocesses constraint parts of all predicates.

 %P ? Shows the definitions of predicates which have non-modular

 constraint parts.

 (4) %o Sets the constraint transformation process into M-solvable

 mode. In this mode, the process checks the satisfiability

 of the constraints. And if they are satisfiable, it

 transforms the constraints into semimodular form, where

 not every predicate may be modular.

 Otherwise, it fails.

 (5) %a Sets the constraint transformation process into all-modular

 mode. In this mode, every generated predicate is made as

 modular.

 (6) %S This is a toggle switch. The default is ON.

 If it is on, The constraints will be generated as

 simple as possible.

 As the default, the constraint transformation process is set in M-

solvable

mode.

4. Built-in Predicates

 4.1 Terms used in this guide

 (1) term

 atom, variable, complex term, partial specified term

 (2) atom

 constant, string, number

 (3) constant

 A sequence of characters which starts with lower case, or

 a sequence of any charcters which is enclosed by single

quotes,

 or a sequence of special characters such as #, $, etc.

 (4) string

 A sequence of any characters including space which is

enclosed

 by double quotes.

 (5) number

 integer, floating point number

 (6) variable

 A sequence of characters which starts with uppper case or

 underscore '_'. Variable whose name is '_' is called

anonymous

 variable. Each anonymous variables is dealt with as

different

 variables.

 (7) complex term

 p(t1, ..., tn) is called a compex term where 'p' is a

constant,

 and t1, ..., tn are terms. Especially when it occurs as a

term

 in some predicate, p(t1, ..., tn) is called as a function,

 otherwise it is called a predicate. And the 'p' is called a

 functor, the 'ti's arguments, and the 'n' is its arity.

 (8) operator

 Some functors can have prefix, postfix or infix notations.

 They are called operators. There are several pre-defined

ones.

 And user can define more.

 (9) PST (Partially Specified Term)

 A sequence of pairs of a constant (called Feature Name) and a

 term (called Feature Value) which is enclosed by braces { and

 }. Especially { } means a empty PST.

 The pair of feature name and value is represented using the

 infix operator '/' such as Name / Value. And the pairs are

 separated with a comma ','.

 (10) list

 A sequence of terms enclosed by brackets [and]. Each term

is

 separated by a comma ','. Especially [] means an empty

list.

 Formally a list is represented as a function whose functor is

 a period '.' and whose arity is 2. Thus [a,b,c] is a short-

 hand representation of .(a, .(b, .(c, []))).

 Furthermore a function such as .(X,Y) is represented as

 [X | Y].

 (11) file pointer

 When reading characters or terms from a file, or writing

 characters or terms into a file, we need a structure

 called a file pointer.

 In order to make a file pointer, use open/3 predicate. With

the

 pointer as an argument to read/write predicate, we can open

 several files, read from them, and write into them.

 It should be noted that 'user' is used as the input file from

 the keyboard and the output file to the screen.

 (12) input/output stream

 You can read characters or terms from a file, and write them

 into a file without file pointers. Only one you need is a

 stream which is set up by see (for input), tell and tella

(for

 output).

 Once a stream is set, the target of read/write become the

 stream file until the stream is closed by seen (for input) or

 told (for output). The default is the keyboard (fot input)

 and the screen (for output).

 (13) clause

 a sequence of terms enclosed by parentheses (and). Each

term

 is separated by a comma ','.

 4.2 List of built-in predicates

 There are many built-in predicates in CUP. In the below, the

arguments

 with + sign represent instantiated terms, and those with - sign

represent free

 variables.

!

 is same as `cut' in Prolog.

[File (, File1, ...)]

 reads programs from the File(s). If there is - sign preceding

 the file name, the file should be read in the reconsulting way.

 X+ < Y+

 Arguments should be numbers. This succeeds if X < Y, otherwise

 fails. This may be written as less(X,Y).

 eg. :- 1.0 < 0.99. --> success

 :- 1.0 < 1.00. --> success

 :- 1.0 < 1.01. --> fail

 X+ <= Y+

 Arguments should be numbers. This succeeds if X <= Y, otherwise

 fails. This may be written as leq(X,Y).

 eg. :- 1.0 <= 0.99. --> fail

 :- 1.0 <= 1.00. --> success

 :- 1.0 <= 1.01. --> success

 X+ > Y+

 Arguments should be numbers. This succeeds if X > Y, otherwise

 fails. This may be written as greater(X,Y).

 eg. :- 1.0 > 0.99. --> success

 :- 1.0 > 1.00. --> fail

 :- 1.0 > 1.01. --> fail

 X+ >= Y+

 Arguments should be numbers. This succeeds if X >= Y, otherwise

 fails. This may be written as geq(X,Y).

 eg. :- 1.0 >= 0.99. --> success

 :- 1.0 >= 1.00. --> success

 :- 1.0 >= 1.01. --> fail

 X = Y

 unifies X with Y. This may be written as equal(X,Y).

 X == Y

 succeeds if X is equal to Y, otherwise fails. By this predicate,

 you can check if two variables is truly equal. Same as eq(X,Y).

 eg. :- X == X. --> success

 :- X == Y. --> fail

 :- a(b) == a(b). --> success

 :- X=..[a,b], X == a(b). --> fail

Term =.. List

 If the first argument, Term, is instantiated, this unifies the

 second with a list whose first member is Term's predicate name,

 and whose other members are Term's arguments.

 Otherwise, that is, if Term is a free variable, List should be

 a list. This unifies Term with a term whose predicate name is

 List's first member and whose arguments are List's other

 members.

abolish(Name+,Arity+)

 removes all the definitions of user-defined predicate, Name/Arity

 from CUP database.

 eg. :- abolish(member,2). --> member/2 is removed.

arg(Pos+,Term+,Arg-)

 The first argument, Pos, should be a list or a function with the

 arity more than or equal to one. Otherwise, this causes an error.

 This unifies the Pos-th argument of Term with Arg. When Term is

 a list such as [a,b,c], it is treated as a binary predicate like

 `.'(a,[b,c]).

 eg. :- arg(2,a(b,c,d),X). --> X = c

assert(Head+)

assert(Head+, Body+)

assert(Head+, Body+, Constraint+)

 registers a definition with Head, Body and Constraint in CUP

 database. Body and Constraint may be a clause or a list. When

 they are omitted, they are dealt with as nulls.

 eg. :- assert(member(X,[_|Y]),(member(X,Y))).

 --> member(X,[_|Y]) :- member(X,Y). is registered.

asserta(Head)

asserta(Head, Body)

asserta(Head, Body, Constraint)

 is same as above.

assertz(Head)

assertz(Head, Body)

assertz(Head, Body, Constraint)

 registers a definition with Head, Body and Constraint at the

 last in CUP database.

atomname(Term, String)

 if Term is a functor, String is unified with Term's functor

 name (string). If String is a string, then Term is unified with

 an atom whose name (string) is equal to String.

 eg. :-atomname(atom(X),Y). --> Y = "atom"

 :-atomname(X,"string"). --> X = string

attach_constraint(X+)

 attaches the constraint clauses, X, to the current process.

 X should be a clause or a list.

 eg. :-attach_constraint((member(X,[a,b,c]))).

 --> The value of X is constrained by member(X,[a,b,c]).

clause(Term+,Body,Constraint)

 returns a definition which has a head unifiable with Term, a body

 unifiable with Body, and a constraint unifiable with Constraint.

 If such a definition has null body and/or null constraint, Body

 and/or Constraint are unified with a null list, []. This may

 unify every definition with a head unifiable with Term by

 causing backtracking.

 eg. :- clause(member(X,Y),Body,Const).

 --> If member(A,[A|_]) is defined, X, Y, Body and Const will be

 unified with A, [A|_], [], [], respcetively.

clause_list(Clause,List)

 if Clause is not a variable, List is unified with a list whose

 elements are same as Clause's.

 If List is a list, Clause is unified with a clause whose

 elements are same as List's. It should be noted that the list

 whose tail part is a variable like [A | X] is dealt as the list

 whose taile part is a list of a variable like [A,X].

 eg. :-clause_list((a,b,c),X). --> X = [a,b,c]

 :-clause_list(X,[a,b,c]). --> X = (a,b,c)

close(FP+)

 closes the file designated by a file pointer, FP.

closefiles

 closes all files opend by open/3.

compare(T1+,T2+,P)

 Ti should be either a number or a string. This returns ==, < or

 > if T1 and T2 are equal, T1 is less than T2, or T1 is greater

 than T2, respectively.

 eg. :- compare(123,124,X). --> X = `<'

 :- compare("abc","ab",X). --> X = `>'

concat(A,B,C)

 unifies C with a string which will be got by concatenating two

 strings A and B. Any two of these arguments should be instantiated.

 You can get another solution by backtracking if it exists.

 eg. :- concat("ab",X,"abcd"). --> X = "cd"

 :- concat(X,Y,"abc"). --> X = "abc", Y = ""

 (causing backtracking) --> X = "ab", Y="c"

concat2(String,List)

 If String is instantiated, this unifies List with a list whose

 members are characters composing the string. Otherwise, if

 List is instantiated, this unifies String with a string which

 is composed by the members of List.

 eg. :- concat2("ab",X). --> X = ["a","b"]

 :- concat2(X,["hell", "o"]). --> X = "hello"

condname(Terms+,List)

 The first argument, Terms, should be a list of terms. This

 unifies List with a list whose members are predicate names appeared

 in Terms.

 eg. :- condname([c0(X),c1(Y,Z)], X). --> X = [c0,c1])

consult(File)

 reads programs from the File.

count(N)

 If N is a number, the internal counter is set to it. If N is

 a variable, it is unified with the value of the counter. After

 that, the counter is incremented by one. Initially it is set to

 0. When backtracking, this fails.

 eg. :- count(2), count(A), count(B).

 --> A = 2, B = 3.

default(Target+, Filter+, DefaultValue+)

 All arguments should be instantiated PSTs. This fails if Target

 doesn't have all attribute-value pairs in Filter. Otherwise,

 Target is unified with a PST whose attribute-value pairs

 are composed from those of DefaultValue which are compatible

 with Target.

 eg. :- X = {a / b, c / d}, default(X, {a / b}, {c / e, e / g}).

 --> X = {a / b, c / d, e / g}

 :- X = {a / b, c / d}, default(X, {a / c}, {e / g}).

 --> fail

divstr(String+,Number,FirstHalf,LastHalf)

 unifies the first Number character strings of String with

 FirstHalf, and the rest part of String with LastHalf.

 When Number may be negative integer, it is treated as the

 length of String `plus' Number.

 FirstHalf should be a character string.

 eg. :- divstr("abcde",-2,X,Y). --> X = "abc", Y = "de"

 :- divstr("abcde",N,"abc",Y). --> N = 3, Y = "de"

 :-divstr("abcde",N,X,"de"). --> N = 3 X = "abc"

equal(X,Y)

 unifies X and Y. This is same as X = Y.

eq(X,Y)

 returns true if X is equal to Y. This is same as X == Y.

execute(List+)

 The argument should be either a list of terms or a clause. This

 evaluates each goal in the argument. Failure of a goal causes

 a backtracking.

 eg. :- execute((memb(X,[a,b]), memb(X,[b,c]))).

 --> X = b

fail

 Always fails.

forall(Functor+,Clause+)

 succeeds when for every solution for Functor satisfies

 Clause. Otherwise it fails.

 eg. :- forall(append(X,Y,[a,b]),(write(X),tab,write(Y),nl)).

 --> prints the following:

 [] [a,b]

 [a] [b]

 [a,b] []

 true (where X and Y are unbound)

 :- forall(member(X,[a,b]),member(X,[c])).

 --> fail

functor(Term,Name,Arity)

 When the first argument, Term, is instantiated, it should be

 a list, a function, or a name atom. This unifies the predicate

 name of Term with Name, and its arity with Arity.

 When Term is a free variable, both of Name and Arity should be

 instantiated. This unifies Term with a term whose predicate name

 is Name and whose arity is Arity.

 eg.:- functor(a(b),X,Y). --> X = a, Y = 1

 :- functor(X,a,3). --> X = a(_1,_2,_3)

gensym(Atom-)

 unifies the argument, Atom, with a new generated name atom,

 which is composed some `core' name and an integer. The core

 name is initally set to `c', and you can change it by using

 CUP command `%n'.

 eg. :- gensym(X). --> X = c0

 %n new --> set the core name to `new'

 :- gensym(X). --> X = new1

gensym(Name+, Atom-)

 The second argument, Atom, should be either a name atom, or a

 string. This unifies the first argument, Name, with a new

 generated name atom.

 eg. :- gensym(gen,X). --> X = gen2

geq(X+,Y+)

 Arguments should be numbers. This succeeds if X >= Y, otherwise

 fails. This may be written as X >= Y.

get(X)

get(X,FP+)

 gets a character code from the current input stream (the

 file pointer, FP). However a space, and control codes such

 as a carriage return is skipped. This unifies it with the first

 argument, X. When backtracking, this gets another character code

 from the input stream (file pointer).

 X is unified with 255 if the end of file(EOF) is gotten.

 eg. :- get(X), write(X).

 --> X = 97, when you type `a' from the keyboard with a carriage

 return.

get0(X)

get0(X,FP+)

 This is same as get/1,2 except that this gets a space and

 control codes such as a tab. Furthermore, X is unified with

 31 for a carriage return code.

get1(X)

get1(X,FP+)

 This is same as get0/1,2 except that carriage return code

 is not converted (ie. X is unified with 13).

greater(X+,Y+)

 Arguments should be numbers. This succeeds if X > Y, otherwise

 fails. This may be written as X > Y.

halt

 quits CUP.

isop(Prec,Type,Op-)

 unifies a defined operator's precedence, type, and name with

 Prec, Type, Op, respectively. By backtracking, every operator

 can be shown.

 eg. :- isop(X,Y,Z). --> X = 900, Y = xfy, Z = '/'

 :- isop(X,Y,(:-)). --> X = 1200, Y = fx

 Note. The operator with high precedence (more than 1000)

 should be quoted as an argument.

length(X+,N)

 The first argument, X, should be a list, a clause, a string, or

 a partially specified term. This unifies the second argument, N,

 with the number of elements of X (the number of characters in

 case that X is a string). If X is such a list as [A|_], then

 N is unified with 1.

 eg. :- length([a,b,c],N). --> N = 3

 :- length((a,b),N). --> N = 2

 :- length({a/1, b/2, c/X}, N). --> N = 3

leq(X+,Y+)

 Arguments should be numbers. This succeeds if X <= Y, otherwise

 fails. This may be written as X <= Y.

less(X+,Y+)

 Arguments should be numbers. This succeeds if X < Y, otherwise

 fails. This may be written as X < Y.

listing(Functor+)

listing(Functor+ / Arity+)

 prints the definition(s) of the predicate whose name is equal to

 Functor's functor name. If Arity is not specified, all the

 definition(s) of the predicates are shown. It returns always

 true.

 eg. :- listing(del).

 --> prints the definitions of the predicate `del'.

 :- listing(a/3).

 --> prints the definitions of the predicate `a' with the arity 3.

ml(Term,List)

 is same as Term =.. List.

memb(X,Y)

 The second argument, Y, should be a list. This unifies the first

 argument, X, with a memebr of Y. When backtracking, X will be

 unified with Y's other member. (This is the built-in member.)

 eg. :- memb(X,[a,b,c]), write(X), fail.

 --> `abcd' is typed out.

multiply(X,Y,Z)

 This fails when more than or equal to two arguments are

 variables. This unifies the argument which is a free variable with

 some number so that X * Y = Z.

name(Atom,List)

 If the first argument, Atom, is an name atom, the second

 argument, List, is unified with a list whose memebrs are

 character codes composing Atom.

 If List is a list whose members are character codes (integer),

 Atom is unified with an name atom which is composed of the

 codes.

 eg. :- name(gen, X). --> X = [103, 101, 110]

 :- name(X, [97.98.99]). --> X = abc

nl

nl(FP+)

 types out a carriage return code, \r, onto the current output

 stream (the file pointer, FP).

not Term+

 This fails if Term succeeds, otherwise succeeds.

 eg. :- memb(X, [a,b,c]), not memb(X,[b,c,d]). --> X = a

 :- memb(X, [b,c]), not memb(X,[b,c,d]). --> fail

op(Prec+,Type+,Op+)

 If the third argument, Op, is a name atom, then it is defined

 as an operator with the precedence, Prec, and the type, Type.

 If Op is a list of name atoms, then each of them is defined as

 operators with the same precedence, Prec, and the same type, Type.

 The type should be one of among xf, yf, fx, fy, xfx, xfy and yfx.

 And the precedence should be integer, greater than 0 and less

 than 1200. You may re-define system defined operators such as

 :- except `,'.

 eg. :- op(500, xfy, [to, from]).

 --> it succeeds, and `to' and `from' are defined as operators

 whose precedence is 500 and whose type is xfy.

open(FileName, Mode+, FP)

 opens a file whose name is designated by the first argument,

 Filename, for reading or writing, and unifies the file

 pointer with the third argument, FP. The second argument, Mode,

 should be either r, w, or a. The mode `r' means it open the file

 for reading. The mode `w' means it creates a new file (even if

 a file whose name is FileName) for writing. The mode `a' means

 it opens a possibly existing file for writing at end of file.

openfiles(FileName)

openfiles(FileName,FP)

openfiles(FileName,FP,Mode)

 unifies the first argument, FileName, with a file name which is

 opened by open/3. Furthermore FP (and Mode) is/are unified with

 the file pointer (and its mode, respectively) if applicable.

 By backtracking, every opened file may be unified with FileName.

or(X+,Y+)

or(X+,Y+,Z+)

or(X+,Y+,Z+,U+)

or(X+,Y+,Z+,U+,V+)

 Arguments should be a list of terms or a clause. This calls every

 goal in one argument sequentially until every goal succeeds.

 If it fails, another argument is evaluated. If every argument

 returns failure, it fails.

pcon

 writes the constraints attached to the current process.

pnames(PST+,List)

 unifies the second argument, List, with the list whose members

 are the attribute name atoms of the partially specified term, PST.

 eg. :- pnames({a / X, b / c}, Y). --> Y = [a, b]

project_cstr(Term)

 replaces the current constraints with a newly generated

 constraint which covers only the variables in the Term.

prompt(String+)

 sets the prompt to the argument, String, which should be a

 string. This prompt is typed out when read/1 is called. Initially

 it is set to "? ".

 eg. :- prompt("Enter> ").

 --> The prompt is changed to "Enter> ".

put(X)

put(X,FP+)

 types out the character code X onto the current output stream

 (the file pointer, FP).

 eg. :- member(X,[97,98,99]),put(X),fail.

 --> a, b, and c are typed out onto the screen.

pvalue(PST+,Pname+,Pvalue)

 unifies the third argument, Pvalue, with the value whose

 attribute is Pname of the partially specified term, PST.

 eg. :- X = {a / 1, b / 2}, pvalue(X, a, Y). --> Y = 1

 :- X = {a / Y}, pvalue(X, a, c). --> X = {a / c}

read(Term)

read(Term,FP+)

 reads a term from the current input stream (the file pointer,

 FP), and unifies it with the first argument, Term. The term

 to be read should be delimited by a period. If CUP

 encounters the enf of file, Term will be unified with an special

 atom, end_of_file. If it reads from the keyboard, it puts a

 prompt, which is determined by prompt/1, onto the screen.

reconsult(File)

 reads programs from the File. If there are any defined

 predicates which is also read from the File, the old one is

 abolished.

reset_timer

 resets the timer. (cf. timer)

retract(Head+)

retract(Head+, Body)

retract(Head+, Body, Constraint)

 removes a definition from CUP database whose head is unifiable

 with the first argument, Head, and whose body is unifiable with

 the second argument, Body, and whose constraint is unifiable with

 the third argument, Constraint. When backtracking, it may remove

 another definition. Body and Constraint are assumed null when

 they are omitted.

 eg. :- regract(member(X,Y)).

 --> if member/2 has such a definition as member(A,[A|_]), it

 will be removed, and X and Y are unified with A and [A|_],

 respectively.

see(File+)

 The argument, File, should be a string or a name atom. It sets

 the current input streamt to the file whose path name is File.

 If there is no such a file, it fails.

 eg. :- see("programs/test.p"), read(X), seen.

 --> CUP sets the current input stream to the `test.p' file of

 the `program' directory in the current directory, reads a term from

 it, and then closes the file.

seen

 closes the file which is the current input stream, and sets the

 current input stream to the keyboard.

stayin(Cond_Clause+,Pred_Clause+)

 If the result of Cond_Clause is true, then Pred_Clause will be

 evaluated in the unfolding process. Otherwise, it is neglected

 as constraints, and stay in as constraints until the Cond_Clause

 will become true in the future unfolding process.

strcmp(X+,Y+,P)

 The first and second arguments, X and Y, should be strings.

 This unifies the third argument, P, with either ==, < or > when

 X and Y are equal, X is less than Y, and X is greater than Y,

 respectively. (Note. The strings is lexicographically ordered.)

 eg. :- strcmp("ab", "abc", X). --> X = '<'

 :- strcmp("abc", "ab", X). --> X = '>'

strlen(S+,N)

 unifies the second argument, N, with the length of the string, S.

 eg. :- strlen("", N). --> N = 0

 :- strlen("abc", N). --> N = 3

substring(String+,Pos+,X-)

 The first argument, String, should be a string, and the second

 argument, Pos, should be a integer. This unifies the third

 argument, X, with the string from the Pos'th character to the

 end of String. The first character's position is 0. When Pos

 is negative, it is treated as the length of String `plus' Pos.

 eg. :- substring("abc",1,X). --> X = "bc"

 :- substring("abc",-1,X). --> X = "c"

substrint(String+,Pos+,Length+,X-)}

 The first argument, String, should be a string, and the second

 and third arguments, Pos and Length, should be integers. This

 unifies the fourth argument, X, with a string which is a part of

 String, whose first character is the Pos'th character of String,

 and whose length is Length. The first character's position is 0.

 When Pos is negative, it is treated as the length of String

 `plus' Pos.

 eg. :- substring("abcde",2,2,X). --> X = "cd"

 :- substring("abcde",-2,2,X). --> X = "de"

subsume(X,Y)

 returns true if X is more general than Y.

 eg. :- subsume(X,a). --> TRUE

 :- subsume(a,X). --> FALSE

 :- subsume({},{a/b}). --> TRUE

 :- subsume({a/b},{}). --> FALSE

sum(X,Y,Z)

 This fails when more than or equal to two arguments are variables.

 This unifies the argument which is a free variable with some

 number so that X + Y = Z.

tab

tab(FP+)

 types out the tab code `\t' onto the current output stream

 (the file pointer, FP).

tell(File+)

 sets the current output stream to the file whose path name is

 designated by the argument, File.

talla(File+)

 This is same as tell/1 except for writing at the end of file.

timer(T,C)

 unifies the first argument, T, with the total elapsed time

 (seconds), and the second argument, C, with the time needed

 for constraint transformations since reset_timer is called.

told

 closes the current output stream, and sets it to the screen.

true

 always succeeds.

type(Term+,X)

 unifies the second argument, X, with the type of the first

 argument, Term. The type is among var, integer, float,

 string, file_pointer, pst, clause, list, functor, and atom.

 eg. :- type(X,Y). --> X = var

 :- type(1,X). --> X = integer

 :- type(1.02,X). --> X = float

 :- type("abc",X). --> X = string

 :- open("programs/test.p","r",T),type(T,X).

 --> X = file_pointer

 :- type({a/1},X). --> X = pst

 :- type((a(U),b(V,W)),X) --> X = clause

 :- type([a,b,c],X). --> X = list

 :- type(a(Y,Z),X). --> X = functor

 :- type(a,X). --> X = atom

unbreak

 returns to the break point in step tracing.

unify(C+,NC-)

 unifies the second argument, NC, with the result of

 transforming the constraints in the list C.

var(Term)

 succeeds if Term is a free variable, otherwise fails.

write(Term)

write(Term, FP+)

 writes the term Term onto the current output stream or the file

 pointer FP.

5. File I/O

5.1 Loading Programs

 In order to load programs from a file, there are two ways:

 (a) At the top level, input the name of file enclosed by double quote

 signs `"', or

 (b) provide the file name as the argument for `cup' command.

5.2 Saving Programs

To save a program into a file, there is the following way:

 (a) Use CUP command `%w' with file name.

5.3 Input/Output Streams and File Pointers

 There are several ways to read from a file or write into a file. One is

to

use Input/Output Stream. Streams can be set up by see/1 for input, and

tell/1

or tella/1 for output. Seen/0 and told/0 are used to close them.

 The main defect of using streams is that there should be only one

streams for each input and output. Thus the user cannot use several

streams at the same time.

 Using file pointers will solve this problem. They are set up by

open/3, and

close/1 is used to close them.

 The number of file pointers is limited to 15 for both input and

output.

The user can check by openfiles/1,/2,/3 what files are open. And she can

close

them all at once by closefiles/0.

 File pointer is represented as a number preceded by #. This can be

used as 2nd argument of read/2 and write/2, or 1st argument of nl/1,

tab/1.

 Example:

 :- open("programs/test.p",r,X).

 --> X = #0 /* #0 is a file pointer */

 :- read(X,#0).

 --> X = a(1) /* read the first term of 'test' file */

 :- openfiles(X,Y). /* check open files and their numbers */

 --> X = "programs/test.p", Y = #0

6. Constraint Transformation

6.1 Usage

The user can use the constraint transformation mechanism of CUP in the

following ways:

 (1) @ command

 One way is to use @ instead of :- at the top level of CUP.

For example, by typing as follows,

 @ member(X,[a,b,c]),member(X,[b,c,d]). [CR]

Then, CUP returns equivalent modularly defined constraints and their

definitions.

 (2) unify/2 predicate

 Another way is to use a constraint transformation predicate

unify/2. The first argument should be a list or a clause whose members

are literals and the second should be a variable as follows:

 :- unify([c0(X,Y), c1(P,Q,R), c2(Q,S)],Z).

unify/2 succeeds if and only if all literals of the first argument

can be transformed into modular constraints, and sets the list as the

value of the second argument.

 (3) Constrained Horn Clause

 The user can attach constraints to usual Horn clauses. This is a

natural

way to use the constraint transformation mechanism in CUP.

6.2 Canonical Form of Constraints

 Constraints in Constrained Horn Clauses must be represented in a

canonical

form, called `modular' form (However the user can use `%P' command to

transform non-modular constraints into modular ones).

 Definition 1. modular

 A sequence of atomic formulae C1, C2, ..., Cm is modular, if

 (1) every argument of Ci is a variable (1 <= i <= m), and

 (2) no variable occurs in two different places, and

 (3) the predicates occurring in Ci are `modularly defined'.

The predicates used as the constraints in Constrained Horn Clauses may be

ordinary Prolog predicates, but they must have the following property.

 Definition 2. modularly defined

 Predicate p is modularly defined, if and only if the body of the

 definition of p is either empty or modular.

However the above definition is sometimes too strict. Thus we use the

following semimodular constraints when 'M-solvable' mode.

 Definition 3. semimodular

 A sequence of atomic formulae C1, C2, ..., Cm is semimodular, if

 (1) every argument of Ci is a variable (1 <= i <= m), and

 (2) no variable occurs in two different places, and

 (3) the predicates occurring in Ci are `semimodularly defined'.

 Definition 4. semimodularly defined

 Predicate p is semimodularly defined, if and only if at least one

 of the body of the definition of p is either empty or

semimodular.

6.3 Operations

 Let D, N, and M be initially empty sets. They are used to keep the

Derived clauses of generated predicates, Non-modular clauses generated

in unfolding, and Modular clauses generated in unfolding, respectively.

 Let C be a sequence of formulas which is non-modular, X1,...,Xn

are the all variables occurring in C, and p be the atom which is not

included in CUProlog database before.

 Then we can get the result of modular(C) by the following steps:

 1. Add the following definition clause to D and N,

 p(X1,...,Xn) :- C.

 2. Repeat the following three operations until N becomes empty:

 (a) unfolding

 Remove one clause z from N, and select an atomic formula A

from

 the body of z. Let a1,...,an be all the clauses in the database

of

 CUProlog whose heads unify with A by the substitution si, and zi

 be the result of applying s i to z except that A is replaced with

the

 body of ai. Add each zi to M or N depending on whether its body

 is modular or not.

 In the case that there are no such a, it means that z is

 unsatisfiable. Then remove all the clauses (recursively) from

 N and D, which has the head of z in their body.

 (b) folding

 Remove one clause z (H :- B, C.) from N only in the case

 that the followings hold:

 1. B and C have no variables in common, where B and C are

 either an atomic formula or a (possibly empty) sequence of

formulas.

 2. There is a clause P :- Q in D, and there is a substitution s

 such that Qs = B.

 Then add the clause, H :- Ps, C. to N or M, depending on

the

 sequence (Ps, C) is modular or not.

 (c) integration

 Remove one clause z (H :- B, C.) from N, if the followings

hold:

 1. B and C ares either an atomic formula or a (possibly empty)

 sequence of atomic formulas.

 2. B and C don't have the same variables in common.

 3. B is not modular and contains varibales x1, ..., xn.

 Assuming that q be an n-ary predicate symbol which is new to

 CUProlog database. Then, add H :- q(X1,...,Xn), C. to M or N,

 depending on whethere the body is modular or not.

 And q(Xi,...,Xn) :-B. is also added to D and N.

 3. When N becomes empty and M is not, then the transformation of C

succeeds. Then we can find the result in M.

 Otherwise, the transformation fails, that is, C cannot be

transformed into modular form.

 The above steps follow the unfold/fold transformation, then the

transformations preserve the semantics of the programs.

6.3 Stayin/2

Sometimes people want to define `not equal' in the constraint

transformation framework. For example,

 not_equal(X,Y) :- not eq(X,Y).

is assumed to be used in the following way:

 @ member(X,Some_list), not_equal(X,a).

That is, the second argument is always instantiated, and the first

argument is usually variable, which comes to be instantiated in some

environment. However, if the first argument isn't instantiated when the

literal, not_equal, is unfolded, then this must return true, and be

deleted from the current constrains.

To avoid it, you can use stayin/2 predicate.

stayin(Condition,PredicateList)

evaluates the Condition argument eachtime the modular mechanism is

called.

If it returns TRUE, then the PrdicateList argument is also

'unfolded' (note: the built-in predicates are just evaluated).

Otherwise, the predicate will stay in until the modular mechanism

will be called again.

 Thus 'stayin(not var(X),eq(X,a))' can be used to realize the above

purpose. You may think this a generalization of 'freeze' mechanism.

6.4 Heuristics in Transformation Process

 CUP needs some control in the transformation process especially the

following cases:

 (1) choosing a clause to unfold from N set

 (2) choosing a formula to unfold

CUP uses depth-first heuristics in the former case.

In the later case, MacCup computes the preference (number) to choose the

formula to fold:

 preference = 3 * const + 2 * func + vnum - defs + units - 2 * rec + 3 *

facts

where

 const = the number of arguments instantiated to atoms

 func = the number of arguments instantiated to complex terms

 vnum = the number of the occurrences of free variables

 defs = the number of definition clauses

 units = the number of unit definition clauses

 rec = 1 if it has recursive definition, 0 otherwise

 facts = 1 if every definition is unit clause, 0 otherwise

This equation is achieved by experience, but in future it may be replace

with

another.

7. Debugger

7.1 Trace Modes

Tracing means to show the status when the spyed predicates are called or

exited as true or fail. You can choose either so-called step trace mode

or so-called normal trace mode. Furthermore, there are some options to

set/remove/show spy points.

 %s toggle switch for step (interactive) trace. In this mode,

 the prompt becomes `>'.

 %t toggle switch for normal trace. In this mode, the prompt

 becomes `$'.

 %p * sets spy points on all predicates.

 %p . removes spy points on all predicates.

 %p Pred toggle switch to set/remove a spy point on Pred

 %p > toggle switch to set/remove a spy point on constraint

 transformations

 %p ? show what predicates are set a spy point

In the step trace mode, each time predicate is called, the execution

stops and awaits your command by showing the following prompt:

 #<trace ?>

You can control how to proceed the execution by the following commands:

(This is effective if you set spy points on some appropriate predicates.)

 a prints the ancestor goals

 b temporarily exits to the top level. To continue the

 execution, unbreak/0 is used

 f makes the current goal fail

 h prints the help message

 n continue the evaluation with normal (non-interactive)

 tracing

 s skips the current goal

 x continue the evaluation without tracing

 z quits refutation

7.2 Tracing Constraint Transformations

 You can even watch and/or control how the constraint

transformation goes by issuing the `%p >' command at the top level and

also the trace command (e.g. %s).

 If you choose step trace mode, it shows the status and awaits

your command, each time the system tries to transform constraints.

The following is an example:

****DEFS={3} NON-MODULAR={} MODULAR={1,2}****

[3(d,0)] c10(V0, V1, V2, V3) <=> one_of([{sem / V0}], {sem / V2}, V3).

[0(g,2)] c9(V0, V1, V2, V3) <=>

 sc_sl_move([{sem / V0}, {sem / V1}], V2, V3).

<2(m)> c9(V0, V1, Nsc, [{sem / Sl}]) :- c10(V0, V1, Sl, Nsc).

<1(i)> c9(V0, V1, [{sem / V0},{sem / V1}], []).

@step <h,b,q,z,u,s,n,CR>?

The first line shows how many predicates to be transformed, and how

many clauses are defined as either modular or non-modular. The

following lines show the clauses which is to be handled and/or have been

defined. The characters shown in the square brackets mean, from left to

right, a clause number (e.g. 3) temporarily given, and current status

(e.g. d) and the number of its definitions (e.g. 2). The following show

what characters are used to represent what kind of status:

 i modularly defined unit clause

 m modularly defined clause

 g successfully transformed clause

 d clause to be transformed

 u temporarily defined clause which has non-modular body

 In the above example, you can find that from the top line, there is

only one clause to be transformed whose number is 3, and also there are

two modularly defined clauses, whose numbers is 1 and 2. From the

following lines, it is shown that the predicate, c10, is going to be

transformed, and the predicate, c9, has been transformed and it has two

definitions, 1 and 2.

You can control the transformation process by the following commands:

 [CR] continue

 b temporarily exits to the top level. To continue the

 execution, unbreak/0 is used

 h prints the help message

 n continue the evaluation with normal(non-interactive) tracing

 x continue the evaluation without tracing

 q abort the process and returns true

 z abort the process and returns fail

 u <clause No.> <literal No.>

 specifies which clause is to be unfolded next.

8. Partially Specified Term

 Partially Specified Term, PST for abbreviation, is useful for

representing a structure whose members are attribute-value pairs.

It is useful especially when the number of members cannot be

determined before-hand.

 PST is represented as follows:

 { attribute_1 / value_1, ..., attribute_n / value_n }

where attributes should be atoms and values be terms. Any two PSTs

are not unifiable only if the values of their corresponding attribute are

not

unifiable. Otherwise they are unifiable. For example,

 (1) The PST { } is unifiable with any PSTs.

 (2) The PSTs whose attributes are entirely different from each other are

 unifiable.

 eg. {a/1, b/2} and {c/3} are unified into {a/1, b/2, c/3}

 (3) The PSTs which have the same attribute with unifiable values are

 unifiable.

 eg. {a/X, b/2} and {a/1, b/Y, c/3} are unified into {a/1, b/2,

c/3}.

 (4) The PSTs which have the same attribute whose values are not

unifiable

 are NOT unifiable.

 eg. {a/1, b/2} and {a/1, b/3} are not unifiable.

 There are several predicates for dealing with PSTs.

 (1) pvalue(PST+, Pname+, Pvalue)

 unifies the third argument, Pvalue, with the value whose

 attribute is Pname of the partially specified term, PST.

 eg. :- X = {a / 1, b / 2}, pvalue(X, a, Y). --> Y = 1

 :- X = {a / Y}, pvalue(X, a, c). --> X = {a / c}

 (2) pnames(PST+, List)

 unifies the second argument, List, with the list whose members

 are the attribute name atoms of the partially specified term, PST.

 eg. :- pnames({a / X, b / c}, Y). --> Y = [a, b]

 (3) default(Target+, Filter+, DefaultValue+)

 All arguments should be instantiated PSTs. This fails if Target

 doesn't have all attribute-value pairs in Filter. Otherwise,

 Target is unified with a PST whose attribute-value pairs

 are composed from those of DefaultValue which are compatible

 with Target.

 eg. :- X = {a / b, c / d}, default(X, {a / b}, {c / e, e / g}).

 --> X = {a / b, c / d, e / g}

 :- X = {a / b, c / d}, default(X, {a / c}, {e / g}).

 --> fail

 (4) length(X+,N)

 This unifies the second argument, N, with the number of elements in X.

 eg. :- length({a/1, b/2, c/A}, X). --> X = 3

 :- length({}, X). --> X = 0

 Note: You can use constrains with PSTs as arguments. However you get

unexpected (incorrect) results because of performance.

9. Syntax of CUP

9.1 BNF Description of CUP

 <char> ::= <upper> | <lower> | <digit>

 <upper> ::= A|B|C| ... |X|Y|Z

 <lower> ::= a|b|c| ... |x|y|z

 <digit> ::= 0|1|2|3|4|5|6|7|8|9

 <bar> ::= |

 <specialchar> ::= <|>|=|-|+|*|#|:|$|%|&|@|?

 <series> ::= <digit> | <digit><series>

 <number> ::= <series> | <series>.<series>

 <string> ::= <empty> | <char><string>

 <charstring> ::= "<string>"

 <specialstring> ::= <specialchar> | <specialchar><specialstring>

 <atom> ::= <lower><string> | <specialstring> | '<string>'

 <var> ::= <upper><string> | _<string>

 <constant> ::= <atom> | <number> | <charstring>

 <functor> ::= <atom>

 <op> ::= <atom>

 <predicate> ::= <atom>

 <list> ::= [] | [<termList>] | [<termList> <bar> <term>]

 <pstItem> ::= <atom> / <term>

 <pstItemList> ::= <pstItem> | <pstItem>, <pstItemList>

 <pst> ::= { } | { <pstItemList> }

 <term> ::= <var> | <constant> | <functor>(<termList>) |

 <list> | <pst> | <op> <term> | <term> <op> <term>

 <termList> ::= <term> | <term>, <termList>

 <literal> ::= <predicate> | <predicate>(<termList>)

 <bodyLiteral> ::= <literal> | <var>

 <body> ::= <bodyLiteral> | <bodyLiteral>, <body>

 <horn> ::= <literal> | <literal> :- <body> | ?- <body>

 <chc> ::= <horn>. | <horn> ; <body>.

9.2 Built-in operators

 700 xfx =

 700 xfx ==

 700 xfx <=

 700 xfx <

 700 xfx >=

 700 xfx >

 700 xfx =..

 700 xfy /

 500 fy not

(1000 yfy ,)

 1200 xfx <=>

 1200 yfx where

 1200 yfx ;

 1200 fx ?-

 1200 fx :-

 1200 xfx :-

Note: comma ',' cannot be redefined.

