Sample Solution to Problem 4

Problem 4: Describe an algorithm for the following decision problem: Given a context-free grammar G with terminal alphabet $\{a, b\}$, is there a string $w \in L(G)$ such that w includes at least one occurrence of a and at least one occurrence of b? Or, to put the question another way, is it the case that

$$L(G) \cap (a+b)^*a(a+b)^* \cap (a+b)^*b(a+b)^* \neq \emptyset?$$

Solution: Assume, without loss of generality, that $G = (V, \{a, b\}, P, S)$ has no useless symbols. (Recall that such symbols can be removed algorithmically.) For brevity, we will use V_{ab} as an abbreviation for $V \cup \{a, b\}$.

Here is a sketch of the algorithm:

1. Compute $\Gamma_a = \{ X \in V_{ab} \mid \text{for some } \alpha, \beta \in V_{ab}, X \Rightarrow \alpha a \beta \}$. Informally, Γ_a consists of those symbols that can produce an occurrence of a.
2. Compute $\Gamma_b = \{ X \in V_{ab} \mid \text{for some } \alpha, \beta \in V_{ab}, X \Rightarrow \alpha b \beta \}$. Informally, Γ_b consists of those symbols that can produce an occurrence of b.
3. If there is a production $A \rightarrow Y_1 Y_2 \cdots Y_m \in P$ such that, for some i and j satisfying $i \neq j$, $Y_i \in \Gamma_a$ and $Y_j \in \Gamma_b$, answer YES; otherwise, answer NO.

Before describing how to carry out the first two steps, let us justify the third:

Lemma: There exists a string $w \in L(G) \cap (a+b)^*a(a+b)^* \cap (a+b)^*b(a+b)^*$ if and only if G has a production $A \rightarrow Y_1 Y_2 \cdots Y_m$ where, for some i and j satisfying $i \neq j$, $Y_i \in \Gamma_a$ and $Y_j \in \Gamma_b$.

Proof: (\Rightarrow) Suppose that G has a production $A \rightarrow Y_1 Y_2 \cdots Y_m$ as described in the statement of the lemma. Then for some $u, v, y_k (i \neq k \neq j), y_{i,1}, y_{i,2}, y_{j,1}, y_{j,2} \in \{a, b\}^*$ satisfying $Y_k \Rightarrow y_k (i \neq k \neq j), Y_i \Rightarrow y_{i,1} a y_{i,2}$, and $Y_j \Rightarrow y_{j,1} a y_{j,2}$ (all of these being justified by our assumption that there are no useless symbols in G), we have

$$S \Rightarrow uAv \Rightarrow uY_1 Y_2 \cdots Y_i \cdots Y_j \cdots Y_m v \Rightarrow u y_1 y_2 \cdots y_{i,1} a y_{i,2} \cdots y_{j,1} b y_{j,2} \cdots y_m v$$

(Note that, although the above suggests $i < j$, that need not be the case.) It follows that $L(G)$ includes a string that has at least one occurrence of a and at least one occurrence of b.

(\Rightarrow) Suppose that $S \Rightarrow w$, where w has at least one occurrence of a and at least one occurrence of b. In a corresponding derivation tree (i.e., one having a root labeled S and leaves that, when their labels are read from left to right, spell out w), find a leaf labeled a and a leaf labeled b. Let A be the label on the node that is the nearest common ancestor of those two leaves. Let the children of that node be labeled Y_1, Y_2, \ldots, Y_m, going from left to right. One of them, say the i-th, is an ancestor of the aforementioned leaf labeled a, and another, say the j-th, is an
ancestor of the leaf labeled b. But then G must have a production $A \rightarrow Y_1 Y_2 \cdots Y_m$ such that $Y_i \in \Gamma_a$ and $Y_j \in \Gamma_b$, where $i \neq j$. QED

It remains to describe how to compute Γ_a and Γ_b. As computing one is just like computing the other, it suffices to demonstrate how to compute Γ_a. Consider the following algorithm.

\begin{verbatim}
gamma := \{a\};
toExplore := \{a\};
do while toExplore \neq \emptyset
 X := toExplore.chooseOne();
 do for each $A \rightarrow \eta \in P$ such that $A \notin \gamma$ and X occurs in η
 \begin{verbatim}
gamma := gamma \cup \{A\};
toExplore := toExplore \cup \{A\};
od;
\end{verbatim}
 toExplore := toExplore \setminus \{X\};
od;
\end{verbatim}

\textbf{Lemma:} Execution of the above results in $\gamma = \Gamma_a$.

\textbf{Proof:} (\subseteq) We show by induction on the number of loop iterations (of the outer loop) that

$$Inv: \text{toExplore} \subseteq \gamma \subseteq \Gamma_a$$

is an invariant of that loop.

Before the first loop iteration, we have $\text{toExplore} = \gamma = \{a\} \subseteq \Gamma_a$. This completes the basis. As an induction hypothesis, assume that, for some $n \geq 0$, Inv holds after the n-th iteration. If, during the $(n + 1)$-st iteration, the symbol A is inserted into γ, it can only be because there is a production $A \rightarrow \eta$ such that X occurs in η, where $X \in \text{toExplore}$. By the induction hypothesis, $X \in \Gamma_a$, which implies (taking $\eta = \eta_1X\eta_2$) that

$$A \Rightarrow \eta_1X\eta_2 \Rightarrow \eta_1\alpha\beta\eta_2$$

for some $\alpha, \beta \in V_{ab}^*$. It follows that $A \in \Gamma_a$; hence, inserting A into both toExplore and γ preserves the truth of Inv. Removing X from toExplore also preserves Inv. This completes the induction, thereby proving that Inv is a loop invariant. As a consequence, Inv will be true (if and) when the loop terminates, from which it follows that, at that moment, $\gamma \subseteq \Gamma_a$ holds, as was to be proved.

(\supseteq) For $i \geq 0$, define $\Phi_i \subseteq V_{ab}$ as follows:

$$\Phi_0 = \{a\}$$

$$\Phi_{k+1} = \Phi_k \cup \{A \in V \mid A \rightarrow Y_1 Y_2 \cdots Y_m \in P \text{ and, for some } i, Y_i \in \Phi_k\} \ (k \geq 0)$$

We make the following observations, leaving the proofs to the reader:

1. $X \in \Phi_k$ if and only if there exists a derivation tree having a root labeled X and a leaf labeled a at distance k or less from the root.
2. \(\Gamma_a = \Phi_0 \cup \Phi_1 \cup \Phi_2 \cup \cdots \)

To show that, upon completion of the algorithm, \(\gamma \) includes all the members of \(\Gamma_a \), we first suppose otherwise. Let \(j \) be the smallest value such that \(\Phi_j \not\subseteq \gamma \), and let \(X \in \Phi_j \) but \(X \notin \gamma \). It cannot be that \(j = 0 \), because \(\Phi_0 = \{ a \} \subseteq \gamma \). By definition of \(\Phi_j \), from \(X \in \Phi_j \) (and \(j > 0 \)) it follows that there is a production \(X \rightarrow Y_1Y_2\cdots Y_m \in P \) such that, for some \(i \), \(Y_i \in \Phi_{j-1} \). By our assumption that \(\Phi_{j-1} \subseteq \gamma \), it must be that \(Y_i \in \gamma \) holds upon termination of the loop. By examining the algorithm, we reason that \(Y_i \) must have been inserted into \texttt{toExplore} at some point during its execution. (After all, every symbol inserted into \(\gamma \) is immediately thereafter inserted into \texttt{toExplore}.) But that means that, during some subsequence iteration of the loop, \(Y_i \) was removed from \texttt{toExplore} and every symbol appearing on the left-hand side of any production in whose right side \(Y_i \) appears was inserted into \(\gamma \). (These actions occur during iterations of the nested loop.) In particular, that means that \(A \) (which, you will recall, is the left-hand side of a production \(A \rightarrow Y_1 \cdots Y_i \cdots Y_m \in P \) on whose right side \(Y_i \) appears) must have been inserted into \(\gamma \). This (together with the fact that symbols are never removed from \(\gamma \)) contradicts our assumption that \(A \notin \gamma \). This completes the proof that \(\gamma \supseteq \Gamma_a \).

Having proved both that \(\gamma \subseteq \Gamma_a \) and \(\gamma \supseteq \Gamma_a \) upon termination of the algorithm, we conclude that \(\gamma = \Gamma_a \) at that time.

It is left to prove only that the algorithm is guaranteed to terminate. Toward that end, we make these observations:

1. no symbol can be inserted into \texttt{toExplore} more than once (because \(\gamma \) includes every symbol that was ever a member of \texttt{toExplore} and a symbol already in the former cannot be inserted into the latter), and

2. on each iteration, one symbol is removed from \texttt{toExplore}.

It follows that the number of iterations of the outer loop is at most \(|V| + 1 \). (This allows for the possibility that every nonterminal symbol, plus \(a \), is inserted into \texttt{toExplore}.) This completes the proof that the algorithm is guaranteed to terminate. \(\text{QED} \)