
CMPS 260 (Theoretical Foundations of CS)
The CYK Algorithm

The CYK algorithm (named for Cocke, Young, and Kasami, each of whom develeped it in-
dependently of the others in the mid-1960’s) solves the membership problem for context-free
grammars in Chomsky Normal Form. That is, given as input a CFG G in Chomsky Normal
Form (CNF) and a string w, the algorithm determines whether or not w ∈ L(G). Because
any context-free grammar can be transformed into CNF (with the possible loss of the empty
string from the generated language), this gives us a way of solving the membership problem
for all CFG’s. Letting G and w denote its two inputs (and assuming that CYK is a boolean
function that, given a CNF grammar and a string, returns true iff the string is generated by
the grammar), the algorithm is as follows:

function Member_of(G : CFG; w : string) return boolean is

begin

if w=e then

if S is erasable --(where S is the start symbol of G)

then return true;

else return false;

end if;

else -- w /= e

G’ := CNF grammar generating L(G) - {e};

return CYK(G’,w);

end if;

Recall that a context-free grammar is said to be in Chomsky normal form if all its rules are
of one of the two forms A → b or A → BC, where b is a terminal symbol and B and C are
nonterminals.

The CYK algorithm is based on the following. Let G be a context-free grammar in Chomsky
normal form, and let w = a1a2 · · · an (ai ∈ Σ) be a string over the terminal alphabet Σ of G.
For i and j satisfying 1 ≤ i ≤ j ≤ n, let wi,j denote the substring aiai+1 · · · aj of w beginning
with its i-th symbol and ending with its j-th symbol, and let Ni,j denote the set of nonterminals
in G from which wi,j can be derived. That is,

Ni,j = {A : A
∗

⇒ wi,j}

Lemma 1: For all i, Ni,i = {A : A → ai is a rule in G}

Proof: Because G is in CNF, the only way that a string of length one can be derived from a
nonterminal symbol is via an application of a rule of the form A → b.

Lemma 2: For all i and j satisfying 1 ≤ i < j ≤ n, A ∈ Ni,j if and only if there exist
nonterminals B and C and a number k satisfying i ≤ k < j such that A → BC is a rule in G,
B ∈ Ni,k, and C ∈ Nk+1,j .

1

Proof: Sufficiency (if):

A → BC is a rule ∧B ∈ Ni,k ∧ C ∈ Nk+1,j

= < by defn of N >

A → BC is a rule ∧B
∗

⇒ wi,k ∧ C
∗

⇒ wk+1,j

=⇒ < by properties of derivations >

A ⇒ BC
∗

⇒ wi,kC
∗

⇒ wi,k · wk+1,j

=⇒ < by properties of derivations >

A
∗

⇒ wi,k · wk+1,j

=⇒ < wi,j = wi,k · wk+1,j >

A
∗

⇒ wi,j

= < by defn of Ni,j >

A ∈ Ni,j

Necessity (only if):

A ∈ Ni,j

= < defn of Ni,j >

A
∗

⇒ wi,j

=⇒ < see note below >

A ⇒ BC
∗

⇒ wi,j for some nonterminals B,C

=⇒ < property of derivations >

A → BC is a rule ∧B
∗

⇒ wi,k ∧ C
∗

⇒ wk+1,j for some B,C, k

= < defn of Ni,k, Nk+1,j >

A → BC is a rule ∧B ∈ Ni,k ∧ C ∈ Nk+1,j for some B,C, k

Note: The second step in the proof of necessity is justified by the fact that, in a CNF CFG, a
derivation of a terminal string of length two or more from a nonterminal symbol A must begin

2

with the application of a rule of the form A → BC.
End of proof of Lemma 2.

Lemma 3: w ∈ L(G) if and only if S ∈ N1,n, where S is the start symbol of G.

Proof:
w ∈ L(G)

= < defn of L(G) >

S
∗

⇒ w

= < w = w1,n >

S
∗

⇒ w1,n

= < defn of N1,n >

S ∈ N1,n

From Lemma 3, it follows that, in order to determine whether w ∈ L(G), it suffices to compute
the set N1,n and then to check whether S is a member of that set. But how can we compute
N1,n? Lemmas 1 and 2 provide strong suggestions. Lemma 1 tells us that, for any i, in order to
compute Ni,i it suffices to examine each rule in G. Lemma 2 tells us that, for any i and m such
that 1 ≤ i < i+m ≤ n, in order to compute Ni,i+m it suffices to examine each rule in G, as well
as the sets Ni,k and Nk+1,i+m for k satisfying i ≤ k < i +m. From this we conclude that the
“correct” order in which to compute the Ni,i+m’s is in increasing order of m. That way, each
time we are to compute a particular set Ni,i+m, all the sets Ni,k and Nk+1,i+m (i ≤ k < i+m)
on which its value depends have been computed already.

We arrive at the following algorithm (on the next page). (For ease of typesetting, in the
algorithm we enclose subscripts within square brackets.)

3

CYK Algorithm.

Input: CFG G in CNF, string w = a[1] a[2] a[3] ... a[n]

Output: YES if w in L(G), NO otherwise

for i in 1..n loop

N[i,i] := empty set;

for each nonterminal A in G loop

if A --> a[i] is a production in G then --note that a[i] = w[i,i]

insert A into N[i,i];

end if;

end loop;

end loop;

for m in 1..n-1 loop

--compute N[i,i+m] for i satisfying 1 <= i <= n-m

for i in 1..n-m loop

--compute N[i,i+m]

N[i,i+m] := empty set;

for k in i..i+m-1 loop

for each production A --> BC in G loop

if B is in N[i,k] and C is in N[k+1,i+m] then

insert A into N[i,i+m];

end if;

end loop;

end loop;

end loop;

end loop;

if S is in N[1,n] then --w in L(G) iff S is in N[1,n]

then return YES;

else return NO;

end if;

4

