Chapter Three:
Closure Properties for
Regular Languages
Once we have defined some languages formally, we can consider combinations and modifications of those languages: unions, intersections, complements, and so on. Such combinations and modifications raise important questions. For example, is the intersection of two regular languages also regular—capable of being recognized directly by some DFA?
Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction
- 3.5 A Mystery DFA
Language Complement

• For any language L over an alphabet Σ, the \textit{complement} of L is

\[\overline{L} = \left\{ x \in \Sigma^* \mid x \notin L \right\} \]

• Example:

\[L = \left\{ 0x \mid x \in \{0,1\}^* \right\} = \text{strings that start with 0} \]

\[\overline{L} = \left\{ 1x \mid x \in \{0,1\}^* \right\} \cup \{\varepsilon\} = \text{strings that \textit{don’t} start with 0} \]

• Given a DFA for any language, it is easy to construct a DFA for its complement
Example

$L = \left\{ 0x \mid x \in \{0,1\}^* \right\}$

$\bar{L} = \left\{ 1x \mid x \in \{0,1\}^* \right\} \cup \{\varepsilon\}$
Complementing a DFA

- All we did was to make the accepting states be non-accepting, and make the non-accepting states be accepting.
- In terms of the 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \), all we did was to replace \(F \) with \(Q-F \).
- Using this construction, we have a proof that the complement of any regular language is another regular language.
Theorem 3.1

The complement of any regular language is a regular language.

• Let L be any regular language
• By definition there must be some DFA $M = (Q, \Sigma, \delta, q_0, F)$ with $L(M) = L$
• Define a new DFA $M' = (Q, \Sigma, \delta, q_0, Q-F)$
• This has the same transition function δ as M, but for any string $x \in \Sigma^*$ it accepts x if and only if M rejects x
• Thus $L(M')$ is the complement of L
• Because there is a DFA for it, we conclude that the complement of L is regular
Closure Properties

• A shorter way of saying that theorem: the regular languages are *closed under complement*

• The complement operation cannot take us out of the class of regular languages

• Closure properties are useful shortcuts: they let you conclude a language is regular without actually constructing a DFA for it
Outline

• 3.1 Closed Under Complement
• 3.2 Closed Under Intersection
• 3.3 Closed Under Union
• 3.4 DFA Proofs Using Induction
• 3.5 A Mystery DFA
Language Intersection

- \(L_1 \cap L_2 = \{x \mid x \in L_1 \text{ and } x \in L_2\} \)
- Example:
 - \(L_1 = \{0x \mid x \in \{0,1\}^*\} = \) strings that start with 0
 - \(L_2 = \{x0 \mid x \in \{0,1\}^*\} = \) strings that end with 0
 - \(L_1 \cap L_2 = \{x \in \{0,1\}^* \mid \text{x starts and ends with 0}\} \)
- Usually we will consider intersections of languages with the same alphabet, but it works either way
- Given two DFAs, it is possible to construct a DFA for the intersection of the two languages
• We'll make a DFA that keeps track of the pair of states \((q_i, r_j)\) the two original DFAs are in
• Initially, they are both in their start states:

\[
\{0x \mid x \in \{0,1\}^*\}
\]

\[
\{x0 \mid x \in \{0,1\}^*\}
\]
Working from there, we keep track of the pair of states (q_i, r_j):
Eventually state-pairs repeat; then we're almost done:

\(\{0x \mid x \in \{0,1\}^*\} \)

\(\{x0 \mid x \in \{0,1\}^*\} \)
Formal Language, chapter 3, slide 14

For intersection, both original DFAs must accept:

\{0x \mid x \in \{0,1\}^*\}

\{x0 \mid x \in \{0,1\}^*\}
Cartesian Product

• In that construction, the states of the new DFA are pairs of states from the two originals.
• That is, the state set of the new DFA is the Cartesian product of the two original sets:

\[S_1 \times S_2 = \{(e_1, e_2) \mid e_1 \in S_1 \text{ and } e_2 \in S_2\} \]

• The construct we just saw is called the product construction.
Theorem 3.2

If L_1 and L_2 are any regular languages, $L_1 \cap L_2$ is also a regular language.

- Let L_1 and L_2 be any regular languages
- By definition there must be DFAs for them:
 - $M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$ with $L(M_1) = L_1$
 - $M_2 = (R, \Sigma, \delta_2, r_0, F_2)$ with $L(M_2) = L_2$
- Define a new DFA $M_3 = (Q \times R, \Sigma, \delta, (q_0, r_0), F_1 \times F_2)$
- For δ, define it so that for all $q \in Q$, $r \in R$, and $a \in \Sigma$, we have
 \[\delta(((q,r),a) = (\delta_1(q,a), \delta_2(r,a)) \]
- M_3 accepts if and only if both M_1 and M_2 accept
- So $L(M_3) = L_1 \cap L_2$, so that intersection is regular
Notes

• Formal construction assumed that the alphabets were the same
 – It can easily be modified for differing alphabets
 – The alphabet for the new DFA would be $\Sigma_1 \cap \Sigma_2$

• Formal construction generated all pairs
 – When we did it by hand, we generated only those pairs actually reachable from the start pair
 – Makes no difference for the language accepted
Outline

• 3.1 Closed Under Complement
• 3.2 Closed Under Intersection
• 3.3 Closed Under Union
• 3.4 DFA Proofs Using Induction
• 3.5 A Mystery DFA
Language Union

- \(L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2 \text{ (or both)}\} \)

- Example:
 - \(L_1 = \{0x \mid x \in \{0,1\}^*\} = \) strings that start with 0
 - \(L_2 = \{x0 \mid x \in \{0,1\}^*\} = \) strings that end with 0
 - \(L_1 \cup L_2 = \{x \in \{0,1\}^* \mid x \text{ starts with } 0 \text{ or ends with } 0 \text{ (or both)}\} \)

- Usually we will consider unions of languages with the same alphabet, but it works either way
Theorem 3.3

If L_1 and L_2 are any regular languages, $L_1 \cup L_2$ is also a regular language.

• Proof 1: using DeMorgan's laws
 – Because the regular languages are closed for intersection and complement, we know they must also be closed for union:

 $$L_1 \cup L_2 = \overline{L_1 \cap L_2}$$
Theorem 3.3

If L_1 and L_2 are any regular languages, $L_1 \cup L_2$ is also a regular language.

• Proof 2: by product construction
 – Same as for intersection, but with different accepting states
 – Accept where either (or both) of the original DFAs accept
 – Accepting state set is $(F_1 \times R) \cup (Q \times F_2)$
{0x | x ∈ \{0,1\}^*}

{0^*| x \in \{0,1\}^*}

- For union, at least one original DFA must accept:
Outline

• 3.1 Closed Under Complement
• 3.2 Closed Under Intersection
• 3.3 Closed Under Union
• 3.4 DFA Proofs Using Induction
• 3.5 A Mystery DFA
Proof Technique: Induction

• Mathematical induction and DFAs are a good match
 – You can learn a lot about DFAs by doing inductive proofs on them
 – You can learn a lot about proof technique by proving things about DFAs

• We'll start with an example

• Consider again the proof of Theorem 3.2...
Review: Theorem 3.2

If L_1 and L_2 are any regular languages, $L_1 \cap L_2$ is also a regular language.

- Let L_1 and L_2 be any regular languages
- By definition there must be DFAs for them:
 - $M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$ with $L(M_1) = L_1$
 - $M_2 = (R, \Sigma, \delta_2, r_0, F_2)$ with $L(M_2) = L_2$
- Define a new DFA $M_3 = (Q \times R, \Sigma, \delta, (q_0, r_0), F_1 \times F_2)$
- For δ, define it so that for all $q \in Q$, $r \in R$, and $a \in \Sigma$, we have $\delta((q, r), a) = (\delta_1(q, a), \delta_2(r, a))$
 (big step)
- M_3 accepts if and only if both M_1 and M_2 accept
- So $L(M_3) = L_1 \cap L_2$, so that intersection is regular
A Big Jump

• There's a big jump between these steps:
 – For δ, define it so that for all $q \in Q$, $r \in R$, and $a \in \Sigma$, we have $\delta((q,r),a) = (\delta_1(q,a), \delta_2(r,a))$
 – M_3 accepts if and only if both M_1 and M_2 accept

• To make that jump, we need to get from the definition of δ to the behavior of δ^*

• We need a lemma like this (Lemma 3.4):

 In the product construction, for all $x \in \Sigma^*$,

 $\delta^*((q_0,r_0),x) = (\delta_1^*(q_0,x), \delta_2^*(r_0,x))$
Lemma 3.4, When $|x| = 0$

In the product construction, for all $x \in \Sigma^*$,
\[\delta^*((q_0, r_0), x) = (\delta_1^*(q_0, x), \delta_2^*(r_0, x)) \]

- It is not hard to prove for particular fixed lengths of x
- For example, when $|x| = 0$:

\[
\delta^*((q_0, r_0), x) \\
= \delta^*((q_0, r_0), \varepsilon) \quad \text{(since } |x| = 0) \\
= (q_0, r_0) \quad \text{(by the definition of } \delta^*) \\
= (\delta_1^*(q_0, \varepsilon), \delta_2^*(r_0, \varepsilon)) \quad \text{(by the definitions of } \delta_1^* \text{ and } \delta_2^*) \\
= (\delta_1^*(q_0, x), \delta_2^*(r_0, x)) \quad \text{(since } |x| = 0)
\]
Lemma 3.4, When $|x| = 1$

In the product construction, for all $x \in \Sigma^*$,

\[
\delta^*((q_0,r_0),x) = (\delta_1^*(q_0,x), \delta_2^*(r_0,x))
\]

- Assuming we have already proved the case $|x| = 0$
- Now, $|x| = 1$:

\[
\delta^*((q_0,r_0), x)
= \delta^*((q_0,r_0), ya) \quad \text{(for some symbol} \ a \ \text{and string} \ y)
= \delta(\delta^*((q_0,r_0), y), a) \quad \text{(by the definition of} \ \delta^*)
= \delta((\delta_1^*(q_0, y), \delta_2^*(r_0, y)), a) \quad \text{(using Lemma 3.4 for} \ |y| = 0)
= (\delta_1(\delta_1^*(q_0, y), a), \delta_2(\delta_2^*(r_0, y), a)) \quad \text{(by the construction of} \ \delta)
= (\delta_1^*(q_0, ya), \delta_2^*(r_0, ya)) \quad \text{(by the definitions of} \ \delta_1^* \ \text{and} \ \delta_2^*)
= (\delta_1^*(q_0, x), \delta_2^*(r_0, x)) \quad \text{(since} \ x = ya)
Lemma 3.4, When $|x| = 2$

In the product construction, for all $x \in \Sigma^*$,

$$\delta^*((q_0, r_0), x) = (\delta_1^*(q_0, x), \delta_2^*(r_0, x))$$

- Assuming we have already proved the case $|x| = 1$
- Almost no change for $|x| = 2$ (changes in red):

$$\delta^*((q_0, r_0), x)$$

$$= \delta^*((q_0, r_0), ya) \quad \text{(for some symbol } a \text{ and string } y)$$

$$= \delta(\delta^*((q_0, r_0), y), a) \quad \text{(by the definition of } \delta^*)$$

$$= \delta((\delta_1^*(q_0, y), \delta_2^*(r_0, y)), a) \quad \text{(using Lemma 3.4 for } |y| = 1)$$

$$= (\delta_1(\delta_1^*(q_0, y), a), \delta_2(\delta_2^*(r_0, y), a)) \quad \text{(by the construction of } \delta)$$

$$= (\delta_1^*(q_0, ya), \delta_2^*(r_0, ya)) \quad \text{(by the definitions of } \delta_1^* \text{ and } \delta_2^*)$$

$$= (\delta_1^*(q_0, x), \delta_2^*(r_0, x)) \quad \text{(since } x = ya)$$
A Never-Ending Proof

- We could easily go on to prove the lemma for $|x| = 3, 4, 5, 6$, and so on
- Each proof would use the fact that the lemma was already proved for shorter strings
- But what we need is a finite proof that Lemma 3.4 holds for all the infinitely many different lengths of x
Inductive Proof Of Lemma 3.4

• Our proof of Lemma 3.4 has two parts:
 – Base case: show that it holds when $|x| = 0$
 – Inductive case: show that whenever it holds for some length $|x| = n$, it also holds for $|x| = n+1$

• By induction, we conclude it holds for all $|x|$
In the product construction, for all $x \in \Sigma^*$,
$$
\delta^*((q_0, r_0), x) = (\delta_1^*(q_0, x), \delta_2^*(r_0, x))
$$

Proof: by induction on $|x|$.

Base case: when $|x| = 0$, we have:
$$
\delta^*((q_0, r_0), x) = \delta^*((q_0, r_0), \varepsilon) = (q_0, r_0) = (\delta_1^*(q_0, \varepsilon), \delta_2^*(r_0, \varepsilon)) = \delta^*((q_0, r_0), \varepsilon)
$$

Inductive case: when $|x| > 0$, we have:
$$
\delta^*((q_0, r_0), x) = \delta^*((q_0, r_0), ya) = \delta(\delta^*((q_0, r_0), y), a) = \delta((\delta_1^*(q_0, y), \delta_2^*(r_0, y)), a) = (\delta_1(\delta_1^*(q_0, y), a), \delta_2(\delta_2^*(r_0, y), a)) = (\delta_1^*(q_0, ya), \delta_2^*(r_0, ya)) = (\delta_1^*(q_0, x), \delta_2^*(r_0, x))
$$

(since $x = ya$)
Inductive Proof

• Every inductive proof has these parts:
 – One or more base cases, with stand-alone proofs
 – One or more inductive cases whose proofs depend on…
 – …an inductive hypothesis: the assumption that the thing you're trying to prove is true for simpler cases

• In our proof, we had:
 – \(|x| = 0\) as the base case
 – \(|x| > 0\) as the inductive case
 – For the inductive hypothesis, the assumption that the lemma holds for any string \(y\) with \(|y| < |x|\)
Induction And Recursion

- Proof with induction is like programming with recursion
- Our proof of Lemma 3.4 is a bit like a program for making a proof for any size x

```c
void proveit(int n) {
    if (n==0) {
        \textit{base case: prove for empty string}
    }
    else {
        proveit(n-1);
        \textit{prove for strings of length n, assuming n-1 case proved}
    }
}
```
General Induction

• Our proof used induction on the length of a string, with the empty string as the base case.
• That is a common pattern for proofs involving DFAs.
• But there are as many different patterns of inductive proof as there are patterns of recursive programming.
• We will see other varieties later.
Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction
- 3.5 A Mystery DFA
Mystery DFA

• What language does this DFA accept?
• We can experiment:
 – It rejects 1, 10, 100, 101, 111, and 1000…
 – It accepts 0, 11, 110, and 1001…
• But even if that gives you an idea about the language it accepts, how can we prove it?
Lemma 3.5.1: for all states $i \in Q$ and symbols $c \in \Sigma$,
\[\delta(i, c) = (2i + c) \mod 3 \]

- Proof is by enumeration:
 - $\delta(0, 0) = 0 = (2 \times 0 + 0) \mod 3$
 - $\delta(0, 1) = 1 = (2 \times 0 + 1) \mod 3$
 - $\delta(1, 0) = 2 = (2 \times 1 + 0) \mod 3$
 - $\delta(1, 1) = 0 = (2 \times 1 + 1) \mod 3$
 - $\delta(2, 0) = 1 = (2 \times 2 + 0) \mod 3$
 - $\delta(2, 1) = 2 = (2 \times 2 + 1) \mod 3$
Function val For Binary Strings

- Define val(x) to be the number for which x is an unsigned binary representation.
- For completeness, define val(ε) = 0.
- For example:
 - val(11) = 3
 - val(111) = 7
 - val(000) = val(0) = val(ε) = 0
- Using val we can say something concise about δ*(0,x) for any x...
Off To A Bad Start...

Lemma 3.5.2, weak: $L(M) = \{x \mid \text{val}(x) \mod 3 = 0\}$

- This is what we ultimately want to prove: M defines the language of binary representations of numbers that are divisible by 3
- But proving this by induction runs into a problem
Proof: by induction on \(|x|\).

Base case: when \(|x| = 0\), we have:
\[\delta^*(0, x) = \delta^*(0, e) \quad \text{(since } |x| = 0)\]
\[= 0 \quad \text{(by definition of } \delta^*)\]
so in this case \(x \in L(M)\) and \(\text{val}(x) \mod 3 = 0\).

Inductive case: when \(|x| > 0\), we have:
\[\delta^*(0, x) = \delta^*(0, yc) \quad \text{(for some symbol } c \text{ and string } y)\]
\[= \delta(\delta^*(0, y), c) \quad \text{(by definition of } \delta^*)\]
\[= ??\]

The proof gets stuck here: our inductive hypothesis is not strong enough to tell us what \(\delta^*(0, y)\) is, when \(\text{val}(y)\) is not divisible by 3.
Proving Something Stronger

• We tried and failed to prove
 \[L(M) = \{ x \mid \text{val}(x) \mod 3 = 0 \} \]

• To make progress, we need to prove a broader claim:
 \[\delta^*(0, x) = \text{val}(x) \mod 3 \]

• That implies our original lemma, but gives us more to work with

• A common trick for inductive proofs

• Proving a strong claim can be easier than proving a weak one, because it gives you a more powerful inductive hypothesis
The Mod 3 Lemma

Lemma 3.5.2, strong: \(\delta^*(0,x) = \text{val}(x) \mod 3 \)

- This follows from Lemma 3.5.1 by induction
- Proof is by induction on the length of the string \(x \)
Lemma 3.5.2, strong: $\delta^*(0,x) = \text{val}(x) \mod 3$

Proof: by induction on $|x|$.

Base case: when $|x| = 0$, we have:

$\delta^*(0,x)$

$= \delta^*(0, \varepsilon)$ (since $|x| = 0$)

$= 0$ (by definition of δ^*)

$= \text{val}(x) \mod 3$ (since $\text{val}(x) \mod 3 = \text{val}(\varepsilon) \mod 3 = 0$)

Inductive case: when $|x| > 0$, we have:

$\delta^*(0,x)$

$= \delta^*(0, yc)$ (for some symbol c and string y)

$= \delta(\delta^*(0, y), c)$ (by definition of δ^*)

$= \delta(\text{val}(y) \mod 3, c)$ (using the inductive hypothesis)

$= (2(\text{val}(y) \mod 3) + c) \mod 3$ (by Lemma 3.5.1)

$= 2(\text{val}(y) + c) \mod 3$ (using modulo arithmetic)

$= \text{val}(yc) \mod 3$ (using binary arithmetic: $\text{val}(yc) = 2(\text{val}(y)) + c$)

$= \text{val}(x) \mod 3$ (since $x = yc$)
Mystery DFA's Language

• Lemma 3.5.2, strong: $\delta^*(0, x) = \text{val}(x) \mod 3$
• That is: the DFA ends in state i when the binary value of the input string, divided by 3, has remainder i
• So $L(M) =$ the set of strings that are binary representations of numbers divisible by 3
• Those examples again:
 – It rejects 1, 10, 100, 101, 111, and 1000…
 – It accepts 0, 11, 110, and 1001…