
1

Chapter Three: 
Closure Properties  

for  
Regular Languages

Formal Language, chapter 3, slide 1

2

Once we have defined some languages formally, we can
consider combinations and modifications of those languages:

unions, intersections, complements, and so on. Such
combinations and modifications raise important questions. For

example, is the intersection of two regular languages also
regular—capable of being recognized directly by some DFA?

Formal Language, chapter 3, slide 2

3

Outline

• 3.1 Closed Under Complement
• 3.2 Closed Under Intersection
• 3.3 Closed Under Union
• 3.4 DFA Proofs Using Induction
• 3.5 A Mystery DFA

Formal Language, chapter 3, slide 3

4

Language Complement

• For any language L over an alphabet Σ, the
complement of L is  

• Example:

• Given a DFA for any language, it is easy to
construct a DFA for its complement

€

L = x ∈ Σ* | x ∉ L{ }

€

L = 0x | x ∈ 0,1{ }
*#

$
%

&
'
(

= strings that start with 0

L = 1x | x ∈ 0,1{ }
*#

$
%

&
'
(
∪ ε{ } = strings that don’ t start with 0

Formal Language, chapter 3, slide 4

5

Example

q0

q1 0

1

0,1

q2 0,1

q0

q1 0

1

0,1

q2 0,1

€

L = 1x | x ∈ 0,1{ }
*#

$
%

&
'
(
∪ ε{ }

€

L = 0x | x ∈ 0,1{ }
*#

$
%

&
'
(

Formal Language, chapter 3, slide 5

6

Complementing a DFA

• All we did was to make the accepting states
be non-accepting, and make the non-
accepting states be accepting

• In terms of the 5-tuple M = (Q, Σ, δ, q0, F), all
we did was to replace F with Q-F

• Using this construction, we have a proof that
the complement of any regular language is
another regular language

Formal Language, chapter 3, slide 6

7

Theorem 3.1

• Let L be any regular language
• By definition there must be some DFA  

M = (Q, Σ, δ, q0, F) with L(M) = L

• Define a new DFA M' = (Q, Σ, δ, q0, Q-F)
• This has the same transition function δ as M, but for any string  

x ∈ Σ* it accepts x if and only if M rejects x
• Thus L(M') is the complement of L
• Because there is a DFA for it, we conclude that the complement

of L is regular

The complement of any regular
language is a regular language.

Formal Language, chapter 3, slide 7

8

Closure Properties

• A shorter way of saying that theorem: the
regular languages are closed under
complement

• The complement operation cannot take us out
of the class of regular languages

• Closure properties are useful shortcuts: they
let you conclude a language is regular without
actually constructing a DFA for it

Formal Language, chapter 3, slide 8

9

Outline

• 3.1 Closed Under Complement
• 3.2 Closed Under Intersection
• 3.3 Closed Under Union
• 3.4 DFA Proofs Using Induction
• 3.5 A Mystery DFA

Formal Language, chapter 3, slide 9

10

Language Intersection

• L1 ∩ L2 = {x | x ∈ L1 and x ∈ L2}
• Example:

– L1 = {0x | x ∈ {0,1}*} = strings that start with 0
– L2 = {x0 | x ∈ {0,1}*} = strings that end with 0
– L1 ∩ L2 = {x ∈ {0,1}* | x starts and ends with 0}

• Usually we will consider intersections of
languages with the same alphabet, but it
works either way

• Given two DFAs, it is possible to construct a
DFA for the intersection of the two languages

Formal Language, chapter 3, slide 10

11

• We'll make a DFA that keeps track of the pair
of states (qi, rj) the two original DFAs are in

• Initially, they are both in their start states:

q0,r0

0

1

r0 r1

1

0

1

0

q0

q1 0

1

0,1

q2 0,1

{x0 | x ∈ {0,1}*}{0x | x ∈ {0,1}*}

Formal Language, chapter 3, slide 11

12

r0 r1

1

0

1

0

q0

q1 0

1

0,1

q2 0,1

{x0 | x ∈ {0,1}*}{0x | x ∈ {0,1}*}

• Working from there, we keep track of the pair
of states (qi, rj):

q0,r0

0

1

q1,r1

0

1

q2,r0

0

1

Formal Language, chapter 3, slide 12

13

r0 r1

1

0

1

0

q0

q1 0

1

0,1

q2 0,1

{x0 | x ∈ {0,1}*}{0x | x ∈ {0,1}*}

• Eventually state-pairs repeat; then we're
almost done:

q0,r0

0

1

q1,r1

q2,r0

1

0
0

1

q1,r0

q2,r1 0

1

0

1
Formal Language, chapter 3, slide 13

14

r0 r1

1

0

1

0

q0

q1 0

1

0,1

q2 0,1

{x0 | x ∈ {0,1}*}{0x | x ∈ {0,1}*}

• For intersection, both original DFAs must
accept:

q0,r0

0

1

q1,r1
�

q2,r0

1

0
0

1

q1,r0

q2,r1 0

1

0

1

Formal Language, chapter 3, slide 14

15

Cartesian Product

• In that construction, the states of the new DFA
are pairs of states from the two originals

• That is, the state set of the new DFA is the
Cartesian product of the two original sets: 
 

• The construct we just saw is called the
product construction

S1×S2 = {(e1,e2) | e1 ∈ S1 and e2 ∈ S2}

Formal Language, chapter 3, slide 15

16

Theorem 3.2

• Let L1 and L2 be any regular languages
• By definition there must be DFAs for them:

– M1 = (Q, Σ, δ1, q0, F1) with L(M1) = L1

– M2 = (R, Σ, δ2, r0, F2) with L(M2) = L2

• Define a new DFA M3 = (Q×R, Σ, δ, (q0,r0), F1×F2)
• For δ, define it so that for all q ∈ Q, r ∈ R, and a ∈ Σ, we

have δ((q,r),a) = (δ1(q,a), δ2(r,a))
• M3 accepts if and only if both M1 and M2 accept
• So L(M3) = L1 ∩ L2, so that intersection is regular

If L1 and L2 are any regular languages,
L1 ∩ L2 is also a regular language.

Formal Language, chapter 3, slide 16

17

Notes

• Formal construction assumed that the
alphabets were the same
– It can easily be modified for differing alphabets
– The alphabet for the new DFA would be Σ1 ∩ Σ2

• Formal construction generated all pairs
– When we did it by hand, we generated only those

pairs actually reachable from the start pair
– Makes no difference for the language accepted

Formal Language, chapter 3, slide 17

18

Outline

• 3.1 Closed Under Complement
• 3.2 Closed Under Intersection
• 3.3 Closed Under Union
• 3.4 DFA Proofs Using Induction
• 3.5 A Mystery DFA

Formal Language, chapter 3, slide 18

19

Language Union

• L1 ∪ L2 = {x | x ∈ L1 or x ∈ L2 (or both)}
• Example:

– L1 = {0x | x ∈ {0,1}*} = strings that start with 0

– L2 = {x0 | x ∈ {0,1}*} = strings that end with 0

– L1 ∪ L2 = {x ∈ {0,1}* | x starts with 0 or ends with 0 (or both)}

• Usually we will consider unions of languages with the
same alphabet, but it works either way

Formal Language, chapter 3, slide 19

20

If L1 and L2 are any regular languages,
L1 ∪ L2 is also a regular language.

Theorem 3.3

• Proof 1: using DeMorgan's laws
– Because the regular languages are closed for

intersection and complement, we know they must
also be closed for union:

€

L1∪L2 = L1∩L2

Formal Language, chapter 3, slide 20

21

If L1 and L2 are any regular languages,
L1 ∪ L2 is also a regular language.

Theorem 3.3

• Proof 2: by product construction
– Same as for intersection, but with different

accepting states
– Accept where either (or both) of the original DFAs

accept
– Accepting state set is (F1×R) ∪ (Q×F2)

Formal Language, chapter 3, slide 21

22

r0 r1

1

0

1

0

q0

q1 0

1

0,1

q2 0,1

{x0 | x ∈ {0,1}*}{0x | x ∈ {0,1}*}

• For union, at least one original DFA must
accept:

q0,r0

0

1

q1,r1
�

q2,r0

1

0
0

1

q1,r0
�

q2,r1
�

0

1

0

1
Formal Language, chapter 3, slide 22

23

Outline

• 3.1 Closed Under Complement
• 3.2 Closed Under Intersection
• 3.3 Closed Under Union
• 3.4 DFA Proofs Using Induction
• 3.5 A Mystery DFA

Formal Language, chapter 3, slide 23

24

Proof Technique: Induction

• Mathematical induction and DFAs are a good
match
– You can learn a lot about DFAs by doing inductive

proofs on them
– You can learn a lot about proof technique by

proving things about DFAs
• We'll start with an example
• Consider again the proof of Theorem 3.2...

Formal Language, chapter 3, slide 24

25

Review: Theorem 3.2

• Let L1 and L2 be any regular languages
• By definition there must be DFAs for them:

– M1 = (Q, Σ, δ1, q0, F1) with L(M1) = L1

– M2 = (R, Σ, δ2, r0, F2) with L(M2) = L2

• Define a new DFA M3 = (Q×R, Σ, δ, (q0,r0), F1×F2)
• For δ, define it so that for all q ∈ Q, r ∈ R, and a ∈ Σ,

we have δ((q,r),a) = (δ1(q,a), δ2(r,a))  
 (big step)

• M3 accepts if and only if both M1 and M2 accept
• So L(M3) = L1 ∩ L2, so that intersection is regular

If L1 and L2 are any regular languages,
L1 ∩ L2 is also a regular language.

Formal Language, chapter 3, slide 25

26

A Big Jump
• There's a big jump between these steps:

– For δ, define it so that for all q ∈ Q, r ∈ R, and  
a ∈ Σ, we have δ((q,r),a) = (δ1(q,a), δ2(r,a))

– M3 accepts if and only if both M1 and M2 accept

• To make that jump, we need to get from the
definition of δ to the behavior of δ*

• We need a lemma like this (Lemma 3.4):

In the product construction, for all x ∈ Σ*,  
δ*((q0,r0),x) = (δ1*(q0,x), δ2*(r0,x))

Formal Language, chapter 3, slide 26

27

Lemma 3.4, When |x| = 0

• It is not hard to prove for particular fixed lengths of x
• For example, when |x| = 0:

In the product construction, for all x ∈ Σ*,  
δ*((q0,r0),x) = (δ1*(q0,x), δ2*(r0,x))

δ*((q0,r0), x)  
 = δ*((q0,r0), ε) (since |x| = 0) 
 = (q0,r0) (by the definition of δ*) 
 = (δ1*(q0, ε), δ2*(r0, ε)) (by the definitions of δ1* and δ2*) 
 = (δ1*(q0, x), δ2*(r0, x)) (since |x| = 0)

Formal Language, chapter 3, slide 27

28

Lemma 3.4, When |x| = 1

• Assuming we have already proved the case |x| = 0
• Now, |x| = 1:

In the product construction, for all x ∈ Σ*,  
δ*((q0,r0),x) = (δ1*(q0,x), δ2*(r0,x))

δ*((q0,r0), x)  
 = δ*((q0,r0), ya) (for some symbol a and string y)  
 = δ(δ*((q0,r0), y), a) (by the definition of δ*) 
 = δ((δ1*(q0, y), δ2*(r0, y)), a) (using Lemma 3.4 for |y| = 0) 
 = (δ1(δ1*(q0, y), a), δ2(δ2*(r0, y), a)) (by the construction of δ)  
 = (δ1*(q0, ya), δ2*(r0, ya)) (by the definitions of δ1* and δ2*) 
 = (δ1*(q0, x), δ2*(r0, x)) (since x = ya)

Formal Language, chapter 3, slide 28

29

Lemma 3.4, When |x| = 2

• Assuming we have already proved the case |x| = 1
• Almost no change for |x| = 2 (changes in red):

In the product construction, for all x ∈ Σ*,  
δ*((q0,r0),x) = (δ1*(q0,x), δ2*(r0,x))

δ*((q0,r0), x)  
 = δ*((q0,r0), ya) (for some symbol a and string y)  
 = δ(δ*((q0,r0), y), a) (by the definition of δ*) 
 = δ((δ1*(q0, y), δ2*(r0, y)), a) (using Lemma 3.4 for |y| = 1)  
 = (δ1(δ1*(q0, y), a), δ2(δ2*(r0, y), a)) (by the construction of δ)  
 = (δ1*(q0, ya), δ2*(r0, ya)) (by the definitions of δ1* and δ2*) 
 = (δ1*(q0, x), δ2*(r0, x)) (since x = ya)

Formal Language, chapter 3, slide 29

30

A Never-Ending Proof

• We could easily go on to prove the lemma for |
x| = 3, 4, 5, 6, and so on

• Each proof would use the fact that the lemma
was already proved for shorter strings

• But what we need is a finite proof that Lemma
3.4 holds for all the infinitely many different
lengths of x

Formal Language, chapter 3, slide 30

31

Inductive Proof Of Lemma 3.4

• Our proof of Lemma 3.4 has two parts:
– Base case: show that it holds when |x| = 0
– Inductive case: show that whenever it holds for

some length |x| = n, it also holds for |x| = n+1
• By induction, we conclude it holds for all |x|

Formal Language, chapter 3, slide 31

In the product construction, for all x ∈ Σ*,  
δ*((q0,r0),x) = (δ1*(q0,x), δ2*(r0,x))

Proof: by induction on |x|. 

Base case: when |x| = 0, we have:
δ *((q0,r0), x)  
 = δ*((q0,r0), ε) (since |x| = 0) 
 = (q0,r0) (by the definition of δ*) 
 = (δ1*(q0, ε), δ2*(r0, ε)) (by the definitions of δ1* and δ2*) 
 = (δ1*(q0, x), δ2*(r0, x)) (since |x| = 0) 
 
Inductive case: when |x| > 0, we have:
δ*((q0,r0), x)  
 = δ*((q0,r0), ya) (for some symbol a and string y)  
 = δ(δ*((q0,r0), y), a) (by the definition of δ*) 
 = δ((δ1*(q0, y), δ2*(r0, y)), a) (by inductive hypothesis, since |y| < |x|) 
 = (δ1(δ1*(q0, y), a), δ2(δ2*(r0, y), a)) (by the construction of δ)  
 = (δ1*(q0, ya), δ2*(r0, ya)) (by the definitions of δ1* and δ2*) 
 = (δ1*(q0, x), δ2*(r0, x)) (since x = ya)

33

Inductive Proof

• Every inductive proof has these parts:
– One or more base cases, with stand-alone proofs
– One or more inductive cases whose proofs depend on…
– …an inductive hypothesis: the assumption that the thing

you're trying to prove is true for simpler cases
• In our proof, we had:

– |x| = 0 as the base case
– |x| > 0 as the inductive case
– For the inductive hypothesis, the assumption that the lemma

holds for any string y with |y| < |x|

Formal Language, chapter 3, slide 33

34

Induction And Recursion
• Proof with induction is like programming with

recursion
• Our proof of Lemma 3.4 is a bit like a program for

making a proof for any size x

void proveit(int n) {  
 if (n==0) {  
 base case: prove for empty string 
 }  
 else {  
 proveit(n-1);  
 prove for strings of length n, assuming n-1 case proved 
 }  
}

Formal Language, chapter 3, slide 34

35

General Induction

• Our proof used induction on the length of a
string, with the empty string as the base case

• That is a common pattern for proofs involving
DFAs

• But there are as many different patterns of
inductive proof as there are patterns of
recursive programming

• We will see other varieties later

Formal Language, chapter 3, slide 35

36

Outline

• 3.1 Closed Under Complement
• 3.2 Closed Under Intersection
• 3.3 Closed Under Union
• 3.4 DFA Proofs Using Induction
• 3.5 A Mystery DFA

Formal Language, chapter 3, slide 36

37

Mystery DFA

• What language does this DFA accept?
• We can experiment:

– It rejects 1, 10, 100, 101, 111, and 1000…
– It accepts 0, 11, 110, and 1001…

• But even if that gives you an idea about the
language it accepts, how can we prove it?

1 2

1

0
0

0

0

1

1

Formal Language, chapter 3, slide 37

38

Transition Function Lemma

1 2

1

0
0

0

0

1

1
Lemma 3.5.1: for all states i ∈ Q and symbols c ∈ Σ,  

δ(i, c) = (2i+c) mod 3
• Proof is by enumeration:

– δ(0, 0) = 0 = (2×0+0) mod 3
– δ(0, 1) = 1 = (2×0+1) mod 3
– δ(1, 0) = 2 = (2×1+0) mod 3
– δ(1, 1) = 0 = (2×1+1) mod 3
– δ(2, 0) = 1 = (2×2+0) mod 3
– δ(2, 1) = 2 = (2×2+1) mod 3

Formal Language, chapter 3, slide 38

39

Function val For Binary Strings

• Define val(x) to be the number for which x is
an unsigned binary representation

• For completeness, define val(ε) = 0
• For example:

– val(11) = 3
– val(111) = 7
– val(000) = val(0) = val(ε) = 0

• Using val we can say something concise
about δ*(0,x) for any x…

Formal Language, chapter 3, slide 39

40

Off To A Bad Start...

1 2

1

0
0

0

0

1

1
Lemma 3.5.2, weak: L(M) = {x | val(x) mod 3 = 0}

• This is what we ultimately want to prove: M defines
the language of binary representations of numbers
that are divisible by 3

• But proving this by induction runs into a problem

Formal Language, chapter 3, slide 40

41

Proof: by induction on |x|. 

Base case: when |x| = 0, we have:
δ*(0, x)  
 = δ*(0, e) (since |x| = 0) 
 = 0 (by definition of δ*) 
so in this case x ∈ L(M) and val(x) mod 3 = 0.

Inductive case: when |x| > 0, we have:
δ*(0, x)  
 = δ*(0, yc) (for some symbol c and string y)  
 = δ(δ*(0, y), c) (by definition of δ*) 
 = ???

The proof gets stuck here: our inductive hypothesis is not strong enough
to tell us what δ*(0, y) is, when val(y) is not divisible by 3

Lemma 3.5.2, weak: L(M) = {x | val(x) mod 3 = 0}

Formal Language, chapter 3, slide 41

42

Proving Something Stronger

• We tried and failed to prove  
 L(M) = {x | val(x) mod 3 = 0}

• To make progress, we need to prove a broader claim: 
 δ*(0,x) = val(x) mod 3

• That implies our original lemma, but gives us more to
work with

• A common trick for inductive proofs
• Proving a strong claim can be easier than proving a

weak one, because it gives you a more powerful
inductive hypothesis

Formal Language, chapter 3, slide 42

43

The Mod 3 Lemma

1 2

1

0
0

0

0

1

1

• This follows from Lemma 3.5.1 by induction
• Proof is by induction on the length of the string x

Lemma 3.5.2, strong: δ*(0,x) = val(x) mod 3

Formal Language, chapter 3, slide 43

44

Proof: by induction on |x|. 

Base case: when |x| = 0, we have:
δ*(0, x)  
 = δ*(0, ε) (since |x| = 0) 
 = 0 (by definition of δ*) 
 = val(x) mod 3 (since val(x) mod 3 = val(ε) mod 3 = 0)  
 
Inductive case: when |x| > 0, we have:
δ*(0, x)  
 = δ*(0, yc) (for some symbol c and string y)  
 = δ(δ*(0, y), c) (by definition of δ*) 
 = δ(val(y) mod 3, c) (using the inductive hypothesis) 
 = (2(val(y) mod 3)+c) mod 3 (by Lemma 3.5.1) 
 = 2(val(y)+c) mod 3 (using modulo arithmetic) 
 = val(yc) mod 3 (using binary arithmetic: val(yc) = 2(val(y))+c)  
 = val(x) mod 3 (since x = yc)

Lemma 3.5.2, strong: δ*(0,x) = val(x) mod 3

45

Mystery DFA's Language

• Lemma 3.5.2, strong: δ*(0, x) = val(x) mod 3
• That is: the DFA ends in state i when the binary value of the input

string, divided by 3, has remainder i
• So L(M) = the set of strings that are binary representations of

numbers divisible by 3
• Those examples again:

– It rejects 1, 10, 100, 101, 111, and 1000…
– It accepts 0, 11, 110, and 1001…

1 2

1

0
0

0

0

1

1

Formal Language, chapter 3, slide 45

