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Chapter Three: 
Closure Properties  

for  
Regular Languages
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Once we have defined some languages formally, we can 
consider combinations and modifications of those languages: 

unions, intersections, complements, and so on.  Such 
combinations and modifications raise important questions.  For 

example, is the intersection of two regular languages also 
regular—capable of being recognized directly by some DFA? 
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Outline

• 3.1 Closed Under Complement 
• 3.2 Closed Under Intersection 
• 3.3 Closed Under Union 
• 3.4 DFA Proofs Using Induction 
• 3.5 A Mystery DFA
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Language Complement

• For any language L over an alphabet Σ, the 
complement of L is  

• Example: 

• Given a DFA for any language, it is easy to 
construct a DFA for its complement
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∪ ε{ } =  strings that don’ t start with 0
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Complementing a DFA

• All we did was to make the accepting states 
be non-accepting, and make the non-
accepting states be accepting 

• In terms of the 5-tuple M = (Q, Σ, δ, q0, F), all 
we did was to replace F with Q-F 

• Using this construction, we have a proof that 
the complement of any regular language is 
another regular language
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Theorem 3.1

• Let L be any regular language 
• By definition there must be some DFA  

M = (Q, Σ, δ, q0, F) with L(M) = L 

• Define a new DFA M' = (Q, Σ, δ, q0, Q-F) 
• This has the same transition function δ as M, but for any string  

x ∈ Σ* it accepts x if and only if M rejects x 
• Thus L(M') is the complement of L 
• Because there is a DFA for it, we conclude that the complement 

of L is regular

The complement of any regular 
language is a regular language.
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Closure Properties

• A shorter way of saying that theorem: the 
regular languages are closed under 
complement 

• The complement operation cannot take us out 
of the class of regular languages 

• Closure properties are useful shortcuts: they 
let you conclude a language is regular without 
actually constructing a DFA for it
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Outline

• 3.1 Closed Under Complement 
• 3.2 Closed Under Intersection 
• 3.3 Closed Under Union 
• 3.4 DFA Proofs Using Induction 
• 3.5 A Mystery DFA
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Language Intersection

• L1 ∩ L2 = {x |  x ∈ L1 and x ∈ L2} 
• Example: 

– L1 = {0x |  x ∈ {0,1}*} = strings that start with 0 
– L2 = {x0 |  x ∈ {0,1}*} = strings that end with 0 
– L1 ∩ L2 = {x ∈ {0,1}* |  x starts and ends with 0} 

• Usually we will consider intersections of 
languages with the same alphabet, but it 
works either way 

• Given two DFAs, it is possible to construct a 
DFA for the intersection of the two languages
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• We'll make a DFA that keeps track of the pair 
of states (qi, rj) the two original DFAs are in 

• Initially, they are both in their start states:
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{x0 |  x ∈ {0,1}*}{0x |  x ∈ {0,1}*}
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• Working from there, we keep track of the pair 
of states (qi, rj):
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• Eventually state-pairs repeat; then we're 
almost done:
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• For intersection, both original DFAs must 
accept:

 

q0,r0 

0 

1 

q1,r1
� 

q2,r0 

1 

0 
0 

1 

q1,r0 

q2,r1 0 

1 

0 

1 

Formal Language, chapter 3, slide 14



15

Cartesian Product

• In that construction, the states of the new DFA 
are pairs of states from the two originals 

• That is, the state set of the new DFA is the 
Cartesian product of the two original sets: 
 

• The construct we just saw is called the 
product construction

S1×S2 = {(e1,e2) |  e1 ∈ S1 and e2 ∈ S2} 
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Theorem 3.2

• Let L1 and L2 be any regular languages 
• By definition there must be DFAs for them: 

– M1 = (Q, Σ, δ1, q0, F1) with L(M1) = L1 

– M2 = (R, Σ, δ2, r0, F2) with L(M2) = L2 

• Define a new DFA M3 = (Q×R, Σ, δ, (q0,r0), F1×F2) 
• For δ, define it so that for all q ∈ Q, r ∈ R, and a ∈ Σ, we 

have δ((q,r),a) = (δ1(q,a), δ2(r,a)) 
• M3 accepts if and only if both M1 and M2 accept 
• So L(M3 ) = L1 ∩ L2, so that intersection is regular

If L1 and L2 are any regular languages, 
L1 ∩ L2 is also a regular language.
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Notes

• Formal construction assumed that the 
alphabets were the same 
– It can easily be modified for differing alphabets  
– The alphabet for the new DFA would be Σ1 ∩ Σ2 

• Formal construction generated all pairs 
– When we did it by hand, we generated only those 

pairs actually reachable from the start pair 
– Makes no difference for the language accepted
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Outline

• 3.1 Closed Under Complement 
• 3.2 Closed Under Intersection 
• 3.3 Closed Under Union 
• 3.4 DFA Proofs Using Induction 
• 3.5 A Mystery DFA
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Language Union

• L1 ∪ L2 = {x |  x ∈ L1 or x ∈ L2 (or both)} 
• Example: 

– L1 = {0x |  x ∈ {0,1}*} = strings that start with 0 

– L2 = {x0 |  x ∈ {0,1}*} = strings that end with 0 

– L1 ∪ L2 = {x ∈ {0,1}* |  x starts with 0 or ends with 0 (or both)} 

• Usually we will consider unions of languages with the 
same alphabet, but it works either way
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If L1 and L2 are any regular languages, 
L1 ∪ L2 is also a regular language.

Theorem 3.3

• Proof 1: using DeMorgan's laws 
– Because the regular languages are closed for 

intersection and complement, we know they must 
also be closed for union:

    

€ 

L1∪L2 = L1∩L2
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If L1 and L2 are any regular languages, 
L1 ∪ L2 is also a regular language.

Theorem 3.3

• Proof 2: by product construction 
– Same as for intersection, but with different 

accepting states 
– Accept where either (or both) of the original DFAs 

accept 
– Accepting state set is (F1×R) ∪ (Q×F2)
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• For union, at least one original DFA must 
accept:  
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Outline

• 3.1 Closed Under Complement 
• 3.2 Closed Under Intersection 
• 3.3 Closed Under Union 
• 3.4 DFA Proofs Using Induction 
• 3.5 A Mystery DFA
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Proof Technique: Induction 

• Mathematical induction and DFAs are a good 
match 
– You can learn a lot about DFAs by doing inductive 

proofs on them 
– You can learn a lot about proof technique by 

proving things about DFAs 
• We'll start with an example 
• Consider again the proof of Theorem 3.2...
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Review: Theorem 3.2

• Let L1 and L2 be any regular languages 
• By definition there must be DFAs for them: 

– M1 = (Q, Σ, δ1, q0, F1) with L(M1) = L1 

– M2 = (R, Σ, δ2, r0, F2) with L(M2) = L2 

• Define a new DFA M3 = (Q×R, Σ, δ, (q0,r0), F1×F2) 
• For δ, define it so that for all q ∈ Q, r ∈ R, and a ∈ Σ, 

we have δ((q,r),a) = (δ1(q,a), δ2(r,a))  
  (big step) 

• M3 accepts if and only if both M1 and M2 accept 
• So L(M3 ) = L1 ∩ L2, so that intersection is regular

If L1 and L2 are any regular languages, 
L1 ∩ L2 is also a regular language.
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A Big Jump
• There's a big jump between these steps: 

– For δ, define it so that for all q ∈ Q, r ∈ R, and  
a ∈ Σ, we have δ((q,r),a) = (δ1(q,a), δ2(r,a)) 

– M3 accepts if and only if both M1 and M2 accept 

• To make that jump, we need to get from the 
definition of δ to the behavior of δ* 

• We need a lemma like this (Lemma 3.4):

In the product construction, for all x ∈ Σ*,  
δ*((q0,r0),x) = (δ1*(q0,x), δ2*(r0,x)) 
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Lemma 3.4, When |x| = 0

• It is not hard to prove for particular fixed lengths of x 
• For example, when |x| = 0:

In the product construction, for all x ∈ Σ*,  
δ*((q0,r0),x) = (δ1*(q0,x), δ2*(r0,x)) 

δ*((q0,r0), x)  
 = δ*((q0,r0), ε)  (since |x| = 0) 
 = (q0,r0)   (by the definition of δ*) 
 = (δ1*(q0, ε), δ2*(r0, ε)) (by the definitions of δ1* and δ2*) 
 = (δ1*(q0, x), δ2*(r0, x)) (since |x| = 0) 
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Lemma 3.4, When |x| = 1

• Assuming we have already proved the case |x| = 0 
• Now, |x| = 1:

In the product construction, for all x ∈ Σ*,  
δ*((q0,r0),x) = (δ1*(q0,x), δ2*(r0,x)) 

δ*((q0,r0), x)  
 = δ*((q0,r0), ya)   (for some symbol a and string  y)  
 = δ(δ*((q0,r0), y), a)  (by the definition of δ*) 
 = δ((δ1*(q0, y), δ2*(r0, y)), a) (using Lemma 3.4 for |y| = 0) 
 = (δ1(δ1*(q0, y), a), δ2(δ2*(r0, y), a)) (by the construction of δ)  
 = (δ1*(q0, ya), δ2*(r0, ya)) (by the definitions of δ1* and δ2*) 
 = (δ1*(q0, x), δ2*(r0, x)) (since x = ya)
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Lemma 3.4, When |x| = 2

• Assuming we have already proved the case |x| = 1 
• Almost no change for |x| = 2 (changes in red):

In the product construction, for all x ∈ Σ*,  
δ*((q0,r0),x) = (δ1*(q0,x), δ2*(r0,x)) 

δ*((q0,r0), x)  
 = δ*((q0,r0), ya)   (for some symbol a and string  y)  
 = δ(δ*((q0,r0), y), a)  (by the definition of δ*) 
 = δ((δ1*(q0, y), δ2*(r0, y)), a) (using Lemma 3.4 for |y| = 1)  
 = (δ1(δ1*(q0, y), a), δ2(δ2*(r0, y), a)) (by the construction of δ)  
 = (δ1*(q0, ya), δ2*(r0, ya)) (by the definitions of δ1* and δ2*) 
 = (δ1*(q0, x), δ2*(r0, x)) (since x = ya)
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A Never-Ending Proof

• We could easily go on to prove the lemma for |
x| = 3, 4, 5, 6, and so on 

• Each proof would use the fact that the lemma 
was already proved for shorter strings 

• But what we need is a finite proof that Lemma 
3.4 holds for all the infinitely many different 
lengths of x
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Inductive Proof Of Lemma 3.4

• Our proof of Lemma 3.4 has two parts: 
– Base case: show that it holds when |x| = 0 
– Inductive case: show that whenever it holds for 

some length |x| = n, it also holds for |x| = n+1 
• By induction, we conclude it holds for all |x|
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In the product construction, for all x ∈ Σ*,  
δ*((q0,r0),x) = (δ1*(q0,x), δ2*(r0,x)) 

Proof:  by induction on |x|. 

Base case: when |x| = 0, we have: 
δ *((q0,r0), x)  
 = δ*((q0,r0), ε)   (since |x| = 0) 
 = (q0,r0)   (by the definition of δ*) 
 = (δ1*(q0, ε), δ2*(r0, ε)) (by the definitions of δ1* and δ2*) 
 = (δ1*(q0, x), δ2*(r0, x)) (since |x| = 0) 
 
Inductive case: when |x| > 0, we have: 
δ*((q0,r0), x)  
 = δ*((q0,r0), ya)   (for some symbol a and string  y)  
 = δ(δ*((q0,r0), y), a)  (by the definition of δ*) 
 = δ((δ1*(q0, y), δ2*(r0, y)), a) (by inductive hypothesis, since |y| < |x|) 
 = (δ1(δ1*(q0, y), a), δ2(δ2*(r0, y), a)) (by the construction of δ)  
 = (δ1*(q0, ya), δ2*(r0, ya)) (by the definitions of δ1* and δ2*) 
 = (δ1*(q0, x), δ2*(r0, x)) (since x = ya)
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Inductive Proof

• Every inductive proof has these parts: 
– One or more base cases, with stand-alone proofs 
– One or more inductive cases whose proofs depend on… 
– …an inductive hypothesis: the assumption that the thing 

you're trying to prove is true for simpler cases 
• In our proof, we had: 

– |x| = 0 as the base case 
– |x| > 0 as the inductive case 
– For the inductive hypothesis, the assumption that the lemma 

holds for any string y with |y| < |x|
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Induction And Recursion
• Proof with induction is like programming with 

recursion 
• Our proof of Lemma 3.4 is a bit like a program for 

making a proof for any size x

void proveit(int n) {  
  if (n==0) {  
    base case: prove for empty string 
  }  
  else {  
    proveit(n-1);  
    prove for strings of length n, assuming n-1 case proved 
  }  
}
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General Induction

• Our proof used induction on the length of a 
string, with the empty string as the base case 

• That is a common pattern for proofs involving 
DFAs 

• But there are as many different patterns of 
inductive proof as there are patterns of 
recursive programming 

• We will see other varieties later
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Outline

• 3.1 Closed Under Complement 
• 3.2 Closed Under Intersection 
• 3.3 Closed Under Union 
• 3.4 DFA Proofs Using Induction 
• 3.5 A Mystery DFA
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Mystery DFA

• What language does this DFA accept? 
• We can experiment: 

– It rejects 1, 10, 100, 101, 111, and 1000… 
– It accepts 0, 11, 110, and 1001… 

• But even if that gives you an idea about the 
language it accepts, how can we prove it?
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Transition Function Lemma 
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Lemma 3.5.1:  for all states i ∈ Q and symbols c ∈ Σ,   

δ(i, c) = (2i+c) mod 3
• Proof is by enumeration: 

– δ(0, 0) = 0 = (2×0+0) mod 3 
– δ(0, 1) = 1 = (2×0+1) mod 3 
– δ(1, 0) = 2 = (2×1+0) mod 3 
– δ(1, 1) = 0 = (2×1+1) mod 3 
– δ(2, 0) = 1 = (2×2+0) mod 3 
– δ(2, 1) = 2 = (2×2+1) mod 3
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Function val For Binary Strings

• Define val(x) to be the number for which x is 
an unsigned binary representation 

• For completeness, define val(ε) = 0 
• For example: 

– val(11) = 3 
– val(111) = 7 
– val(000) = val(0) = val(ε) = 0 

• Using val we can say something concise 
about δ*(0,x) for any x…
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Off To A Bad Start...
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Lemma 3.5.2, weak:  L(M) = {x | val(x) mod 3 = 0}

• This is what we ultimately want to prove: M defines 
the language of binary representations of numbers 
that are divisible by 3 

• But proving this by induction runs into a problem
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Proof:  by induction on |x|. 

Base case: when |x| = 0, we have: 
δ*(0, x)  
 = δ*(0, e) (since |x| = 0) 
 = 0 (by definition of δ*) 
so in this case x ∈ L(M) and val(x) mod 3 = 0. 

Inductive case: when |x| > 0, we have: 
δ*(0, x)  
 = δ*(0, yc)  (for some symbol c and string y)  
 = δ(δ*(0, y), c)  (by definition of δ*) 
 = ??? 

The proof gets stuck here: our inductive hypothesis is not strong enough 
to tell us what δ*(0, y) is, when val(y) is not divisible by 3

Lemma 3.5.2, weak:  L(M) = {x | val(x) mod 3 = 0}
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Proving Something Stronger

• We tried and failed to prove  
 L(M) = {x | val(x) mod 3 = 0} 

• To make progress, we need to prove a broader claim: 
 δ*(0,x) = val(x) mod 3 

• That implies our original lemma, but gives us more to 
work with 

• A common trick for inductive proofs 
• Proving a strong claim can be easier than proving a 

weak one, because it gives you a more powerful 
inductive hypothesis

Formal Language, chapter 3, slide 42



43

The Mod 3 Lemma
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• This follows from Lemma 3.5.1 by induction 
• Proof is by induction on the length of the string x

Lemma 3.5.2, strong:  δ*(0,x) = val(x) mod 3
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Proof:  by induction on |x|. 

Base case: when |x| = 0, we have: 
δ*(0, x)  
 = δ*(0, ε)  (since |x| = 0)  
 = 0  (by definition of δ*) 
 = val(x) mod 3  (since val(x) mod 3 = val(ε) mod 3 = 0)  
 
Inductive case: when |x| > 0, we have: 
δ*(0, x)  
 = δ*(0, yc)  (for some symbol c and string y)  
 = δ(δ*(0, y), c)  (by definition of δ*) 
 = δ(val(y) mod 3, c) (using the inductive hypothesis) 
 = (2(val(y) mod 3)+c) mod 3 (by Lemma 3.5.1) 
 = 2(val(y)+c) mod 3 (using modulo arithmetic) 
 = val(yc) mod 3 (using binary arithmetic: val(yc) = 2(val(y))+c)  
 = val(x) mod 3  (since x = yc)

Lemma 3.5.2, strong:  δ*(0,x) = val(x) mod 3
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Mystery DFA's Language

• Lemma 3.5.2, strong:  δ*(0, x) = val(x) mod 3 
• That is: the DFA ends in state i when the binary value of the input 

string, divided by 3, has remainder i 
• So L(M) = the set of strings that are binary representations of 

numbers divisible by 3 
• Those examples again: 

– It rejects 1, 10, 100, 101, 111, and 1000… 
– It accepts 0, 11, 110, and 1001…
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