Chapter Three:
Closure Properties
for
Regular Languages

Once we have defined some languages formally, we can consider combinations and modifications of those Canguages: unions, intersections, complements, and so on. Such combinations and modifications raise important questions. For example, is the intersection of two regular languages also regular-capable of 6eing recognized directly by some $\mathcal{D F A}$?

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction
- 3.5 A Mystery DFA

Language Complement

- For any language L over an alphabet Σ, the complement of L is
- Example:

$$
\bar{L}=\left\{x \in \Sigma^{*} \mid x \notin L\right\}
$$

$L=\left\{0 x \mid x \in\{0,1\}^{*}\right\}=$ strings that start with 0 $\bar{L}=\left\{1 x \mid x \in\{0,1\}^{*}\right\} \cup\{\varepsilon\}=$ strings that don't start with 0

- Given a DFA for any language, it is easy to construct a DFA for its complement

Example

Complementing a DFA

- All we did was to make the accepting states be non-accepting, and make the nonaccepting states be accepting
- In terms of the 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, all we did was to replace F with $Q-F$
- Using this construction, we have a proof that the complement of any regular language is another regular language

Theorem 3.1

The complement of any regular language is a regular language.

- Let L be any regular language
- By definition there must be some DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with $L(M)=L$
- Define a new DFA $M^{\prime}=\left(Q, \Sigma, \delta, q_{0}, Q-F\right)$
- This has the same transition function δ as M, but for any string $x \in \Sigma^{*}$ it accepts x if and only if M rejects x
- Thus $L\left(M^{\prime}\right)$ is the complement of L
- Because there is a DFA for it, we conclude that the complement of L is regular

Closure Properties

- A shorter way of saying that theorem: the regular languages are closed under complement
- The complement operation cannot take us out of the class of regular languages
- Closure properties are useful shortcuts: they let you conclude a language is regular without actually constructing a DFA for it

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction
- 3.5 A Mystery DFA

Language Intersection

- $L_{1} \cap L_{2}=\left\{x \mid x \in L_{1}\right.$ and $\left.x \in L_{2}\right\}$
- Example:
$-L_{1}=\left\{0 x \mid x \in\{0,1\}^{*}\right\}=$ strings that start with 0
$-L_{2}=\left\{x 0 \mid x \in\{0,1\}^{*}\right\}=$ strings that end with 0
$-L_{1} \cap L_{2}=\left\{x \in\{0,1\}^{*} \mid x\right.$ starts and ends with 0$\}$
- Usually we will consider intersections of languages with the same alphabet, but it works either way
- Given two DFAs, it is possible to construct a DFA for the intersection of the two languages

- We'll make a DFA that keeps track of the pair of states (q_{i}, r_{j}) the two original DFAs are in
- Initially, they are both in their start states:

- Working from there, we keep track of the pair of states $\left(q_{i}, r_{j}\right)$:

- Eventually state-pairs repeat; then we're almost done:

- For intersection, both original DFAs must accept:

Cartesian Product

- In that construction, the states of the new DFA are pairs of states from the two originals
- That is, the state set of the new DFA is the Cartesian product of the two original sets:

$$
S_{1} \times S_{2}=\left\{\left(e_{1}, e_{2}\right) \mid e_{1} \in S_{1} \text { and } e_{2} \in S_{2}\right\}
$$

- The construct we just saw is called the product construction

Theorem 3.2

If L_{1} and L_{2} are any regular languages, $L_{1} \cap L_{2}$ is also a regular language.

- Let L_{1} and L_{2} be any regular languages
- By definition there must be DFAs for them:
- $M_{1}=\left(Q, \Sigma, \delta_{1}, q_{0}, F_{1}\right)$ with $L\left(M_{1}\right)=L_{1}$
- $M_{2}=\left(R, \Sigma, \delta_{2}, r_{0}, F_{2}\right)$ with $L\left(M_{2}\right)=L_{2}$
- Define a new DFA $M_{3}=\left(Q \times R, \Sigma, \delta,\left(q_{0}, r_{0}\right), F_{1} \times F_{2}\right)$
- For δ, define it so that for all $q \in Q, r \in R$, and $a \in \Sigma$, we have $\delta((q, r), a)=\left(\delta_{1}(q, a), \delta_{2}(r, a)\right)$
- M_{3} accepts if and only if both M_{1} and M_{2} accept
- So $L\left(M_{3}\right)=L_{1} \cap L_{2}$, so that intersection is regular

Notes

- Formal construction assumed that the alphabets were the same
- It can easily be modified for differing alphabets
- The alphabet for the new DFA would be $\Sigma_{1} \cap \Sigma_{2}$
- Formal construction generated all pairs
- When we did it by hand, we generated only those pairs actually reachable from the start pair
- Makes no difference for the language accepted

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction
- 3.5 A Mystery DFA

Language Union

- $L_{1} \cup L_{2}=\left\{x \mid x \in L_{1}\right.$ or $x \in L_{2}$ (or both) $\}$
- Example:
- $L_{1}=\left\{0 x \mid x \in\{0,1\}^{*}\right\}=$ strings that start with 0
- $L_{2}=\left\{x 0 \mid x \in\{0,1\}^{*}\right\}=$ strings that end with 0
$-L_{1} \cup L_{2}=\left\{x \in\{0,1\}^{*} \mid x\right.$ starts with 0 or ends with 0 (or both) $\}$
- Usually we will consider unions of languages with the same alphabet, but it works either way

Theorem 3.3

If L_{1} and L_{2} are any regular languages, $L_{1} \cup L_{2}$ is also a regular language.

- Proof 1: using DeMorgan's laws
- Because the regular languages are closed for intersection and complement, we know they must also be closed for union:

$$
L_{1} \cup L_{2}=\overline{\overline{L_{1}} \cap \overline{L_{2}}}
$$

Theorem 3.3

If L_{1} and L_{2} are any regular languages, $L_{1} \cup L_{2}$ is also a regular language.

- Proof 2: by product construction
- Same as for intersection, but with different accepting states
- Accept where either (or both) of the original DFAs accept
- Accepting state set is $\left(F_{1} \times R\right) \cup\left(Q \times F_{2}\right)$

- For union, at least one original DFA must accept:

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction
- 3.5 A Mystery DFA

Proof Technique: Induction

- Mathematical induction and DFAs are a good match
- You can learn a lot about DFAs by doing inductive proofs on them
- You can learn a lot about proof technique by proving things about DFAs
- We'll start with an example
- Consider again the proof of Theorem 3.2...

Review: Theorem 3.2

If L_{1} and L_{2} are any regular languages,
$L_{1} \cap L_{2}$ is also a regular language.

- Let L_{1} and L_{2} be any regular languages
- By definition there must be DFAs for them:
- $M_{1}=\left(Q, \Sigma, \delta_{1}, q_{0}, F_{1}\right)$ with $L\left(M_{1}\right)=L_{1}$
- $M_{2}=\left(R, \Sigma, \delta_{2}, r_{0}, F_{2}\right)$ with $L\left(M_{2}\right)=L_{2}$
- Define a new DFA $M_{3}=\left(Q \times R, \Sigma, \delta,\left(q_{0}, r_{0}\right), F_{1} \times F_{2}\right)$
- For δ, define it so that for all $q \in Q, r \in R$, and $a \in \Sigma$, we have $\delta((q, r), a)=\left(\delta_{1}(q, a), \delta_{2}(r, a)\right)$
(big step)
- M_{3} accepts if and only if both M_{1} and M_{2} accept
- So $L\left(M_{3}\right)=L_{1} \cap L_{2}$, so that intersection is regular

A Big Jump

- There's a big jump between these steps:
- For δ, define it so that for all $q \in Q, r \in R$, and $a \in \Sigma$, we have $\delta((q, r), a)=\left(\delta_{1}(q, a), \delta_{2}(r, a)\right)$
- M_{3} accepts if and only if both M_{1} and M_{2} accept
- To make that jump, we need to get from the definition of δ to the behavior of δ^{*}
- We need a lemma like this (Lemma 3.4):

In the product construction, for all $x \in \Sigma^{\star}$,

$$
\delta^{*}\left(\left(q_{0}, r_{0}\right), x\right)=\left(\delta_{1}{ }^{*}\left(q_{0}, x\right), \delta_{2}{ }^{*}\left(r_{0}, x\right)\right)
$$

Lemma 3.4, When $|x|=0$

In the product construction, for all $x \in \Sigma^{*}$,

$$
\delta^{*}\left(\left(q_{0}, r_{0}\right), x\right)=\left(\delta_{1}{ }^{*}\left(q_{0}, x\right), \delta_{2}{ }^{*}\left(r_{0}, x\right)\right)
$$

- It is not hard to prove for particular fixed lengths of x
- For example, when $|x|=0$:

$$
\begin{array}{rlr}
\delta^{*}\left(\left(q_{0}, r_{0}\right), x\right) & \\
& =\delta^{*}\left(\left(q_{0}, r_{0}\right), \varepsilon\right) & \\
& =\left(q_{0}, r_{0}\right) & \text { (bince }|x|=0) \\
& =\left(\delta_{1}{ }^{*}\left(q_{0}, \varepsilon\right), \delta_{2}{ }^{*}{ }^{*}\left(r_{0}, \varepsilon\right)\right) & \text { (by the definitit definiti } \\
& =\left(\delta_{1}{ }^{*}\left(q_{0}, x\right), \delta_{2}{ }^{*}\left(r_{0}, x\right)\right) & \text { (since }|x|=0)
\end{array}
$$

Lemma 3.4, When $|x|=1$

In the product construction, for all $x \in \Sigma^{*}$,

$$
\delta^{*}\left(\left(q_{0}, r_{0}\right), x\right)=\left(\delta_{1}{ }^{*}\left(q_{0}, x\right), \delta_{2}{ }^{*}\left(r_{0}, x\right)\right)
$$

- Assuming we have already proved the case $|x|=0$
- Now, $|x|=1$:

$$
\begin{aligned}
& \delta^{*}\left(\left(q_{0}, r_{0}\right), x\right) \\
& \left.=\delta^{*}\left(\left(q_{0}, r_{0}\right), y a\right) \quad \text { (for some symbol } a \text { and string } y\right) \\
& \left.=\delta\left(\delta^{*}\left(\left(q_{0}, r_{0}\right), y\right), a\right) \quad \text { (by the definition of } \delta^{*}\right) \\
& =\delta\left(\left(\delta_{1}{ }^{*}\left(q_{0}, y\right), \delta_{2}{ }^{*}\left(r_{0}, y\right)\right) \text {, a) (using Lemma } 3.4 \text { for }|y|=0\right. \text {) } \\
& =\left(\delta_{1}\left(\delta_{1}{ }^{*}\left(q_{0}, y\right), a\right), \delta_{2}\left(\delta_{2}{ }^{*}\left(r_{0}, y\right), a\right)\right) \quad \text { (by the construction of } \delta \text {) } \\
& \left.=\left(\delta_{1}{ }^{*}\left(q_{0}, y a\right), \delta_{2}{ }^{*}\left(r_{0}, y a\right)\right) \quad \text { (by the definitions of } \delta_{1}{ }^{*} \text { and } \delta_{2}{ }^{*}\right) \\
& =\left(\delta_{1}{ }^{*}\left(q_{0}, x\right), \delta_{2}{ }^{*}\left(r_{0}, x\right)\right) \quad(\text { since } x=y a)
\end{aligned}
$$

Lemma 3.4, When $|x|=2$

In the product construction, for all $x \in \Sigma^{*}$,

$$
\delta^{*}\left(\left(q_{0}, r_{0}\right), x\right)=\left(\delta_{1}{ }^{*}\left(q_{0}, x\right), \delta_{2}{ }^{*}\left(r_{0}, x\right)\right)
$$

- Assuming we have already proved the case $|x|=1$
- Almost no change for $|x|=2$ (changes in red):

$$
\begin{aligned}
& \delta^{*}\left(\left(q_{0}, r_{0}\right), x\right) \\
& \left.=\delta^{*}\left(\left(q_{0}, r_{0}\right), y a\right) \quad \text { (for some symbol } a \text { and string } y\right) \\
& \left.=\delta\left(\delta^{*}\left(\left(q_{0}, r_{0}\right), y\right), a\right) \quad \text { (by the definition of } \delta^{*}\right) \\
& =\delta\left(\left(\delta_{1}{ }^{*}\left(q_{0}, y\right), \delta_{2}{ }^{*}\left(r_{0}, y\right)\right) \text {, a) (using Lemma } 3.4 \text { for }|y|=1\right. \text {) } \\
& =\left(\delta_{1}\left(\delta_{1}{ }^{*}\left(q_{0}, y\right), a\right), \delta_{2}\left(\delta_{2}{ }^{*}\left(r_{0}, y\right), a\right)\right) \quad \text { (by the construction of } \delta \text {) } \\
& \left.=\left(\delta_{1}{ }^{*}\left(q_{0}, y a\right), \delta_{2}{ }^{*}\left(r_{0}, y a\right)\right) \quad \text { (by the definitions of } \delta_{1}{ }^{*} \text { and } \delta_{2}{ }^{*}\right) \\
& =\left(\delta_{1}{ }^{*}\left(q_{0}, x\right), \delta_{2}{ }^{*}\left(r_{0}, x\right)\right) \quad(\text { since } x=y a)
\end{aligned}
$$

A Never-Ending Proof

- We could easily go on to prove the lemma for $x \mid=3,4,5,6$, and so on
- Each proof would use the fact that the lemma was already proved for shorter strings
- But what we need is a finite proof that Lemma 3.4 holds for all the infinitely many different lengths of x

Inductive Proof Of Lemma 3.4

- Our proof of Lemma 3.4 has two parts:
- Base case: show that it holds when $|x|=0$
- Inductive case: show that whenever it holds for some length $|x|=n$, it also holds for $|x|=n+1$
- By induction, we conclude it holds for all $|x|$

In the product construction, for all $x \in \Sigma^{*}$,
 $$
\delta^{*}\left(\left(q_{0}, r_{0}\right), x\right)=\left(\delta_{1}{ }^{*}\left(q_{0}, x\right), \delta_{2}{ }^{*}\left(r_{0}, x\right)\right)
$$

Proof: by induction on $|x|$.
Base case: when $|x|=0$, we have:

$$
\begin{aligned}
\delta * & \left(\left(q_{0}, r_{0}\right), x\right) & & \\
& =\delta^{*}\left(\left(q_{0}, r_{0}\right), \varepsilon\right) & & \text { (since }|x|=0) \\
& =\left(q_{0}, r_{0}\right) & & \text { (by the definiti } \\
& =\left(\delta_{1}{ }^{*}\left(q_{0}, \varepsilon\right), \delta_{2}{ }^{*}\left(r_{0}, \varepsilon\right)\right) & & \text { (by the definiti } \\
& =\left(\delta_{1}{ }^{*}\left(q_{0}, x\right), \delta_{2}{ }^{*}\left(r_{0}, x\right)\right) & & \text { (since }|x|=0)
\end{aligned}
$$

Inductive case: when $|x|>0$, we have:

$$
\delta^{*}\left(\left(q_{0}, r_{0}\right), x\right)
$$

$$
\left.=\delta^{*}\left(\left(q_{0}, r_{0}\right), y a\right) \quad \text { (for some symbol } a \text { and string } y\right)
$$

$$
\left.=\delta\left(\delta^{*}\left(\left(q_{0}, r_{0}\right), y\right), a\right) \quad \text { (by the definition of } \delta^{*}\right)
$$

$$
\left.=\delta\left(\left(\delta_{1}{ }^{*}\left(q_{0}, y\right), \delta_{2}{ }^{*}\left(r_{0}, y\right)\right), a\right) \text { (by inductive hypothesis, since }|y|<|x|\right)
$$

$$
\left.=\left(\delta_{1}\left(\delta_{1}{ }^{*}\left(q_{0}, y\right), a\right), \delta_{2}\left(\delta_{2}{ }^{*}\left(r_{0}, y\right), a\right)\right) \quad \text { (by the construction of } \delta\right)
$$

$$
\left.=\left(\delta_{1}{ }^{*}\left(q_{0}, y a\right), \delta_{2}{ }^{*}\left(r_{0}, y a\right)\right) \quad \text { (by the definitions of } \delta_{1}{ }^{*} \text { and } \delta_{2}{ }^{*}\right)
$$

$$
=\left(\delta_{1}^{*}\left(q_{0}, x\right), \delta_{2}^{*}\left(r_{0}, x\right)\right) \quad(\text { since } x=y a)
$$

Inductive Proof

- Every inductive proof has these parts:
- One or more base cases, with stand-alone proofs
- One or more inductive cases whose proofs depend on...
- ...an inductive hypothesis: the assumption that the thing you're trying to prove is true for simpler cases
- In our proof, we had:
$-|x|=0$ as the base case
$-|x|>0$ as the inductive case
- For the inductive hypothesis, the assumption that the lemma holds for any string y with $|y|<|x|$

Induction And Recursion

- Proof with induction is like programming with recursion
- Our proof of Lemma 3.4 is a bit like a program for making a proof for any size x

```
void proveit(int n) {
    if (n==0) {
            base case: prove for empty string
    }
    else {
        proveit(n-1);
            prove for strings of length n, assuming n-1 case proved
    }
}
```


General Induction

- Our proof used induction on the length of a string, with the empty string as the base case
- That is a common pattern for proofs involving DFAs
- But there are as many different patterns of inductive proof as there are patterns of recursive programming
- We will see other varieties later

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction
- 3.5 A Mystery DFA

Mystery DFA

- What language does this DFA accept?
- We can experiment:
- It rejects 1, 10, 100, 101, 111, and 1000...
- It accepts $0,11,110$, and 1001...
- But even if that gives you an idea about the language it accepts, how can we prove it?

Transition Function Lemma

Lemma 3.5.1: for all states $i \in Q$ and symbols $c \in \Sigma$,

$$
\delta(i, c)=(2 i+c) \bmod 3
$$

- Proof is by enumeration:
$-\delta(0,0)=0=(2 \times 0+0) \bmod 3$
$-\delta(0,1)=1=(2 \times 0+1) \bmod 3$
$-\delta(1,0)=2=(2 \times 1+0) \bmod 3$
$-\delta(1,1)=0=(2 \times 1+1) \bmod 3$
$-\delta(2,0)=1=(2 \times 2+0) \bmod 3$
$-\delta(2,1)=2=(2 \times 2+1) \bmod 3$

Function val For Binary Strings

- Define $\operatorname{val}(x)$ to be the number for which x is an unsigned binary representation
- For completeness, define $\operatorname{val}(\varepsilon)=0$
- For example:
$-\operatorname{val}(11)=3$
$-\operatorname{val}(111)=7$
$-\operatorname{val}(000)=\operatorname{val}(0)=\operatorname{val}(\varepsilon)=0$
- Using val we can say something concise about $\delta^{*}(0, x)$ for any $x . .$.

Off To A Bad Start...

Lemma 3.5.2, weak: $L(M)=\{x \mid \operatorname{val}(x) \bmod 3=0\}$

- This is what we ultimately want to prove: M defines the language of binary representations of numbers that are divisible by 3
- But proving this by induction runs into a problem

Lemma 3.5.2, weak: $L(M)=\{x \mid \operatorname{val}(x) \bmod 3=0\}$

Proof: by induction on $|x|$.
Base case: when $|x|=0$, we have:
$\delta^{*}(0, x)$

$$
\begin{array}{ll}
=\delta^{*}(0, \mathrm{e}) & (\text { since }|x|=0) \\
=0 & \\
=0 & \text { (by definition of } \left.\delta^{*}\right)
\end{array}
$$

so in this case $x \in L(M)$ and $\operatorname{val}(x) \bmod 3=0$.
Inductive case: when $|x|>0$, we have:
$\delta^{*}(0, x)$

$$
\begin{array}{ll}
=\delta^{*}(0, y c) & (\text { for some symbol } c \text { and string } y) \\
=\delta\left(\delta^{*}(0, y), c\right) & \left(\text { by definition of } \delta^{*}\right)
\end{array}
$$

The proof gets stuck here: our inductive hypothesis is not strong enough to tell us what $\delta^{*}(0, y)$ is, when $\operatorname{val}(y)$ is not divisible by 3

Proving Something Stronger

- We tried and failed to prove

$$
L(M)=\{x \mid \operatorname{val}(x) \bmod 3=0\}
$$

- To make progress, we need to prove a broader claim:

$$
\delta^{*}(0, x)=\operatorname{val}(x) \bmod 3
$$

- That implies our original lemma, but gives us more to work with
- A common trick for inductive proofs
- Proving a strong claim can be easier than proving a weak one, because it gives you a more powerful inductive hypothesis

The Mod 3 Lemma

Lemma 3.5.2, strong: $\delta^{*}(0, x)=\operatorname{val}(x) \bmod 3$

- This follows from Lemma 3.5.1 by induction
- Proof is by induction on the length of the string x

Lemma 3.5.2, strong: $\delta^{*}(0, x)=\operatorname{val}(x) \bmod 3$

Proof: by induction on $|x|$.
Base case: when $|x|=0$, we have:
$\delta^{*}(0, x)$

$$
\begin{array}{ll}
=\delta^{*}(0, \varepsilon) & (\text { since }|x|=0) \\
=0 & \left(\text { by definition of } \delta^{*}\right) \\
=\operatorname{val}(x) \bmod 3 & (\text { since } \operatorname{val}(x) \bmod 3=\operatorname{val}(\varepsilon) \bmod 3=0)
\end{array}
$$

Inductive case: when $|x|>0$, we have:
$\delta^{\star}(0, x)$

$$
\begin{aligned}
& \left.=\delta^{*}(0, y c) \quad \text { (for some symbol } c \text { and string } y\right) \\
& \left.=\delta\left(\delta^{*}(0, y), c\right) \quad \text { (by definition of } \delta^{*}\right) \\
& =\delta(\operatorname{val}(y) \bmod 3, c) \quad \text { (using the inductive hypothesis) } \\
& =(2(\operatorname{val}(y) \bmod 3)+c) \bmod 3 \quad \text { (by Lemma 3.5.1) } \\
& =2(\operatorname{val}(y)+c) \bmod 3 \quad \text { (using modulo arithmetic) } \\
& =\operatorname{val}(y c) \bmod 3 \quad \text { (using binary arithmetic: val }(y c)=2(\operatorname{val}(y))+c) \\
& =\operatorname{val}(x) \bmod 3 \quad \text { (since } x=y c)
\end{aligned}
$$

Mystery DFA's Language

- Lemma 3.5.2, strong: $\delta^{*}(0, x)=\operatorname{val}(x) \bmod 3$
- That is: the DFA ends in state i when the binary value of the input string, divided by 3 , has remainder i
- So $L(M)=$ the set of strings that are binary representations of numbers divisible by 3
- Those examples again:
- It rejects 1, 10, 100, 101, 111, and 1000...
- It accepts $0,11,110$, and $1001 \ldots$

