Chapter Three: Closure Properties for Regular Languages

Formal Language, chapter 3, slide 1

Once we have defined some languages formally, we can consider combinations and modifications of those languages: unions, intersections, complements, and so on. Such combinations and modifications raise important questions. For example, is the intersection of two regular languages also regular—capable of being recognized directly by some DFA?

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction
- 3.5 A Mystery DFA

Language Complement

 For any language L over an alphabet Σ, the complement of L is

$$\overline{L} = \left\{ x \in \Sigma^* \mid x \notin L \right\}$$

• Example:

$$L = \left\{ 0x \mid x \in \{0,1\}^* \right\} = \text{ strings that start with } 0$$
$$\overline{L} = \left\{ 1x \mid x \in \{0,1\}^* \right\} \cup \{\varepsilon\} = \text{ strings that } don't \text{ start with } 0$$

• Given a DFA for any language, it is easy to construct a DFA for its complement

Complementing a DFA

- All we did was to make the accepting states be non-accepting, and make the nonaccepting states be accepting
- In terms of the 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, all we did was to replace F with Q-F
- Using this construction, we have a proof that the complement of any regular language is another regular language

Theorem 3.1

The complement of any regular language is a regular language.

- Let *L* be any regular language
- By definition there must be some DFA $M = (Q, \Sigma, \delta, q_0, F)$ with L(M) = L
- Define a new DFA $M' = (Q, \Sigma, \delta, q_0, Q-F)$
- This has the same transition function δ as *M*, but for any string *x* ∈ Σ* it accepts *x* if and only if *M* rejects *x*
- Thus L(M') is the complement of L
- Because there is a DFA for it, we conclude that the complement of *L* is regular

Closure Properties

- A shorter way of saying that theorem: the regular languages are *closed under complement*
- The complement operation cannot take us out of the class of regular languages
- Closure properties are useful shortcuts: they let you conclude a language is regular without actually constructing a DFA for it

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction
- 3.5 A Mystery DFA

Language Intersection

- $L_1 \cap L_2 = \{x \mid x \in L_1 \text{ and } x \in L_2\}$
- Example:

 $-L_1 = {0x | x ∈ {0,1}*} = strings that start with 0$

 $-L_2 = \{x0 \mid x \in \{0,1\}^*\}$ = strings that end with 0

 $- L_1 \cap L_2 = {x ∈ {0,1}* | x \text{ starts and ends with 0}}$

- Usually we will consider intersections of languages with the same alphabet, but it works either way
- Given two DFAs, it is possible to construct a DFA for the intersection of the two languages

- We'll make a DFA that keeps track of the pair of states (q_i, r_j) the two original DFAs are in
- Initially, they are both in their start states:

 Working from there, we keep track of the pair of states (q_i, r_j):

 Eventually state-pairs repeat; then we're almost done:

• For intersection, both original DFAs must accept:

Cartesian Product

- In that construction, the states of the new DFA are pairs of states from the two originals
- That is, the state set of the new DFA is the *Cartesian product* of the two original sets:

$$S_1 \times S_2 = \{(e_1, e_2) \mid e_1 \in S_1 \text{ and } e_2 \in S_2\}$$

• The construct we just saw is called the *product construction*

Theorem 3.2

If L_1 and L_2 are any regular languages, $L_1 \cap L_2$ is also a regular language.

- Let L_1 and L_2 be any regular languages
- By definition there must be DFAs for them:

$$- M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$$
 with $L(M_1) = L_1$

$$- M_2 = (R, \Sigma, \delta_2, r_0, F_2)$$
 with $L(M_2) = L_2$

- Define a new DFA $M_3 = (Q \times R, \Sigma, \delta, (q_0, r_0), F_1 \times F_2)$
- For δ, define it so that for all q ∈ Q, r ∈ R, and a ∈ Σ, we have δ((q,r),a) = (δ₁(q,a), δ₂(r,a))
- M_3 accepts if and only if both M_1 and M_2 accept
- So $L(M_3) = L_1 \cap L_2$, so that intersection is regular

Notes

- Formal construction assumed that the alphabets were the same
 - It can easily be modified for differing alphabets
 - The alphabet for the new DFA would be $\Sigma_1 \cap \Sigma_2$
- Formal construction generated all pairs
 - When we did it by hand, we generated only those pairs actually reachable from the start pair
 - Makes no difference for the language accepted

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction
- 3.5 A Mystery DFA

Language Union

- $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2 \text{ (or both)}\}$
- Example:

- L_1 = {0*x* | *x* ∈ {0,1}*} = strings that start with 0

- L_2 = {x0 | x ∈ {0,1}*} = strings that end with 0

- $L_1 \cup L_2$ = { $x \in \{0,1\}^*$ | x starts with 0 or ends with 0 (or both)}

 Usually we will consider unions of languages with the same alphabet, but it works either way

Theorem 3.3

If L_1 and L_2 are any regular languages, $L_1 \cup L_2$ is also a regular language.

- Proof 1: using DeMorgan's laws
 - Because the regular languages are closed for intersection and complement, we know they must also be closed for union:

$$L_1 \cup L_2 = \overline{L_1} \cap \overline{L_2}$$

Theorem 3.3

If L_1 and L_2 are any regular languages, $L_1 \cup L_2$ is also a regular language.

- Proof 2: by product construction
 - Same as for intersection, but with different accepting states
 - Accept where either (or both) of the original DFAs accept
 - Accepting state set is $(F_1 \times R) \cup (Q \times F_2)$

For union, at least one original DFA must accept:

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction
- 3.5 A Mystery DFA

Proof Technique: Induction

- Mathematical induction and DFAs are a good match
 - You can learn a lot about DFAs by doing inductive proofs on them
 - You can learn a lot about proof technique by proving things about DFAs
- We'll start with an example
- Consider again the proof of Theorem 3.2...

Review: Theorem 3.2

If L_1 and L_2 are any regular languages,

- $L_1 \cap L_2$ is also a regular language.
- Let L_1 and L_2 be any regular languages
- By definition there must be DFAs for them:

$$- M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$$
 with $L(M_1) = L_1$

 $- M_2 = (R, \Sigma, \delta_2, r_0, F_2)$ with $L(M_2) = L_2$

- Define a new DFA $M_3 = (Q \times R, \Sigma, \delta, (q_0, r_0), F_1 \times F_2)$
- For δ, define it so that for all q ∈ Q, r ∈ R, and a ∈ Σ, we have δ((q,r),a) = (δ₁(q,a), δ₂(r,a))
 (big step)
- M_3 accepts if and only if both M_1 and M_2 accept
- So $L(M_3) = L_1 \cap L_2$, so that intersection is regular

A Big Jump

- There's a big jump between these steps:
 - For δ , define it so that for all $q \in Q$, $r \in R$, and $a \in \Sigma$, we have $\delta((q,r),a) = (\delta_1(q,a), \delta_2(r,a))$
 - M_3 accepts if and only if both M_1 and M_2 accept
- To make that jump, we need to get from the definition of δ to the behavior of δ^*
- We need a lemma like this (Lemma 3.4):

In the product construction, for all $x \in \Sigma^*$, $\delta^*((q_0, r_0), x) = (\delta_1^*(q_0, x), \delta_2^*(r_0, x))$

Lemma 3.4, When |x| = 0

In the product construction, for all $x \in \Sigma^*$, $\delta^*((q_0, r_0), x) = (\delta_1^*(q_0, x), \delta_2^*(r_0, x))$

- It is not hard to prove for particular fixed lengths of x
- For example, when |x| = 0:

$$\begin{split} \delta^*((q_0, r_0), x) &= \delta^*((q_0, r_0), \varepsilon) & (\text{since } |x| = 0) \\ &= (q_0, r_0) & (\text{by the definition of } \delta^*) \\ &= (\delta_1^*(q_0, \varepsilon), \, \delta_2^*(r_0, \varepsilon)) & (\text{by the definitions of } \delta_1^* \text{ and } \delta_2^*) \\ &= (\delta_1^*(q_0, x), \, \delta_2^*(r_0, x)) & (\text{since } |x| = 0) \end{split}$$

Lemma 3.4, When |x| = 1

In the product construction, for all $x \in \Sigma^*$, $\delta^*((q_0, r_0), x) = (\delta_1^*(q_0, x), \delta_2^*(r_0, x))$

- Assuming we have already proved the case |x| = 0
- Now, |x| = 1:

 $\delta^*((q_0, r_0), x)$ $= \delta^*((q_0, r_0), ya) \qquad (for some symbol a and string y)$ $= \delta(\delta^*((q_0, r_0), y), a) \qquad (by the definition of \delta^*)$ $= \delta((\delta_1^*(q_0, y), \delta_2^*(r_0, y)), a) (using Lemma 3.4 for |y| = 0)$ $= (\delta_4(\delta_4^*(q_0, y), a), \delta_2(\delta_2^*(r_0, y), a)) \qquad (by the construction of \delta)$

= $(\delta_1(\delta_1^*(q_0, y), a), \delta_2(\delta_2^*(r_0, y), a))$ (by the construction of $\delta)$ = $(\delta_1^*(q_0, ya), \delta_2^*(r_0, ya))$ (by the definitions of δ_1^* and δ_2^*) = $(\delta_1^*(q_0, x), \delta_2^*(r_0, x))$ (since x = ya)

Lemma 3.4, When |x| = 2

In the product construction, for all $x \in \Sigma^*$, $\delta^*((q_0, r_0), x) = (\delta_1^*(q_0, x), \delta_2^*(r_0, x))$

- Assuming we have already proved the case |x| = 1
- Almost no change for |x| = 2 (changes in red):

 $\delta^*((q_0, r_0), x)$

 $= \delta^*((q_0, r_0), ya)$ (for some symbol *a* and string *y*) $= \delta(\delta^*((q_0, r_0), y), a)$ (by the definition of δ^*) $= \delta((\delta_1^*(q_0, y), \delta_2^*(r_0, y)), a)$ (using Lemma 3.4 for |y| = 1) $= (\delta_1(\delta_1^*(q_0, y), a), \delta_2(\delta_2^*(r_0, y), a))$ (by the construction of δ) $= (\delta_1^*(q_0, ya), \delta_2^*(r_0, ya))$ (by the definitions of δ_1^* and δ_2^*) $= (\delta_1^*(q_0, x), \delta_2^*(r_0, x))$ (since x = ya)

A Never-Ending Proof

- We could easily go on to prove the lemma for |
 x| = 3, 4, 5, 6, and so on
- Each proof would use the fact that the lemma was already proved for shorter strings
- But what we need is a finite proof that Lemma 3.4 holds for all the infinitely many different lengths of x

Inductive Proof Of Lemma 3.4

- Our proof of Lemma 3.4 has two parts:
 - Base case: show that it holds when |x| = 0
 - Inductive case: show that whenever it holds for some length |x| = n, it also holds for |x| = n+1
- By induction, we conclude it holds for all |x|

In the product construction, for all $x \in \Sigma^*$, $\delta^*((q_0, r_0), x) = (\delta_1^*(q_0, x), \delta_2^*(r_0, x))$

Proof: by induction on |x|.

Base case: when $ x = 0$, we ha	ve:
$\delta * ((q_0, r_0), x)$	
$= \delta^*((q_0, r_0), ε)$	(since x = 0)
$= (q_0, r_0)$	(by the definition of δ^*)
= $(\delta_1^*(q_0, \epsilon), \delta_2^*(r_0, \epsilon))$	(by the definitions of δ_1^* and δ_2^*)
$= (\delta_1^{*}(q_0, x), \delta_2^{*}(r_0, x))$	(since x = 0)

Inductive case: when |x| > 0, we have: $\delta^*((q_0, r_0), x)$

> $= \delta^*((q_0, r_0), ya)$ (for some symbol *a* and string *y*) $= \delta(\delta^*((q_0, r_0), y), a)$ (by the definition of δ^*) $= \delta((\delta_1^*(q_0, y), \delta_2^*(r_0, y)), a)$ (by inductive hypothesis, since |y| < |x|) $= (\delta_1(\delta_1^*(q_0, y), a), \delta_2(\delta_2^*(r_0, y), a))$ (by the construction of δ) $= (\delta_1^*(q_0, ya), \delta_2^*(r_0, ya))$ (by the definitions of δ_1^* and δ_2^*) $= (\delta_1^*(q_0, x), \delta_2^*(r_0, x))$ (since x = ya)

Inductive Proof

- Every inductive proof has these parts:
 - One or more base cases, with stand-alone proofs
 - One or more inductive cases whose proofs depend on...
 - ...an inductive hypothesis: the assumption that the thing you're trying to prove is true for simpler cases
- In our proof, we had:
 - -|x| = 0 as the base case
 - -|x| > 0 as the inductive case
 - For the inductive hypothesis, the assumption that the lemma holds for any string *y* with |y| < |x|

Induction And Recursion

- Proof with induction is like programming with recursion
- Our proof of Lemma 3.4 is a bit like a program for making a proof for any size *x*

```
void proveit(int n) {
    if (n==0) {
        base case: prove for empty string
    }
    else {
        proveit(n-1);
        prove for strings of length n, assuming n-1 case proved
    }
}
```

General Induction

- Our proof used induction on the length of a string, with the empty string as the base case
- That is a common pattern for proofs involving DFAs
- But there are as many different patterns of inductive proof as there are patterns of recursive programming
- We will see other varieties later

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction
- 3.5 A Mystery DFA

- What language does this DFA accept?
- We can experiment:
 - It rejects 1, 10, 100, 101, 111, and 1000...
 - It accepts 0, 11, 110, and 1001...
- But even if that gives you an idea about the language it accepts, how can we prove it?

- Lemma 3.5.1: for all states $i \in Q$ and symbols $c \in \Sigma$, $\delta(i, c) = (2i+c) \mod 3$
- Proof is by enumeration:

$$- \delta(0, 0) = 0 = (2 \times 0 + 0) \mod 3$$

- $\delta(0, 1) = 1 = (2 \times 0 + 1) \mod 3$
- $\delta(1, 0) = 2 = (2 \times 1 + 0) \mod 3$
- $\delta(1, 1) = 0 = (2 \times 1 + 1) \mod 3$
- $\delta(2, 0) = 1 = (2 \times 2 + 0) \mod 3$
- $\delta(2, 1) = 2 = (2 \times 2 + 1) \mod 3$

Formal Language, chapter 3, slide 38

Function val For Binary Strings

- Define val(x) to be the number for which x is an unsigned binary representation
- For completeness, define $val(\varepsilon) = 0$
- For example:
 - val(11) = 3
 - val(111) = 7
 - $val(000) = val(0) = val(\varepsilon) = 0$
- Using val we can say something concise about δ*(0,x) for any x...

- This is what we ultimately want to prove: *M* defines the language of binary representations of numbers that are divisible by 3
- But proving this by induction runs into a problem

Lemma 3.5.2, weak: $L(M) = \{x \mid val(x) \mod 3 = 0\}$

Proof: by induction on |x|.

```
Base case: when |x| = 0, we have:

\delta^*(0, x)

= \delta^*(0, e) (since |x| = 0)

= 0 (by definition of \delta^*)

so in this case x \in L(M) and val(x) mod 3 = 0.
```

Inductive case: when |x| > 0, we have: $\delta^*(0, x)$ $= \delta^*(0, yc)$ $= \delta(\delta^*(0, y), c)$ = ???

The proof gets stuck here: our inductive hypothesis is not strong enough to tell us what $\delta^*(0, y)$ is, when val(y) is not divisible by 3

Proving Something Stronger

- We tried and failed to prove
 L(M) = {x | val(x) mod 3 = 0}
- To make progress, we need to prove a broader claim: δ*(0,x) = val(x) mod 3
- That implies our original lemma, but gives us more to work with
- A common trick for inductive proofs
- Proving a strong claim can be easier than proving a weak one, because it gives you a more powerful inductive hypothesis

- This follows from Lemma 3.5.1 by induction
- Proof is by induction on the length of the string *x*

Lemma 3.5.2, strong: $\delta^*(0,x) = val(x) \mod 3$

Proof: by induction on |x|.

Base case: when $ x = 0$, we have: $\delta^*(0, x)$	
= δ*(0, ε)	(since x = 0)
= 0	(by definition of δ^*)
= val(<i>x</i>) mod 3	(since val(x) mod 3 = val(ε) mod 3 = 0)

Inductive case: when |x| > 0, we have:

 $\delta^{*}(0, x)$

- = $\delta^*(0, yc)$ (for some symbol *c* and string *y*)
- = $\delta(\delta^*(0, y), c)$ (by definition of δ^*)
- = $\delta(val(y) \mod 3, c)$ (using the inductive hypothesis)
- $= (2(val(y) \mod 3)+c) \mod 3$ (by Lemma 3.5.1)
- = $2(val(y)+c) \mod 3$ (using modulo arithmetic)
- = val(yc) mod 3 (using binary arithmetic: val(yc) = 2(val(y))+c)
- = val(x) mod 3 (since x = yc)

- Lemma 3.5.2, strong: $\delta^*(0, x) = val(x) \mod 3$
- That is: the DFA ends in state *i* when the binary value of the input string, divided by 3, has remainder *i*
- So *L*(*M*) = the set of strings that are binary representations of numbers divisible by 3
- Those examples again:
 - It rejects 1, 10, 100, 101, 111, and 1000...
 - It accepts 0, 11, 110, and 1001...