Chapter Two:
 Finite Automata

The pro6lem with implementing $\mathcal{N} F$ As is that, 6eing nondeterministic, they do not really define computational procedures for testing language membership. To implement an $\mathcal{N F A}$ we must give a computational procedure that can look at a string and decide whether the $\mathcal{N F A}$ has at Ceast one sequence of legal transitions on that string leading to an accepting state. This seems to require searching through all legal sequences for the given input string-6ut how?

One approach is to implement a direct 6acktracking search. Another is to convert the $\mathcal{N F}$ A into a $\mathcal{D F A}$ and implement that instead. This conversion is both useful and theoretically interesting: the fact that it is afways possible shows that in spite of their extra flexibility, $\mathcal{N F}$ As have exactly the same power as $\mathcal{D F A}$ s. They can define exactly the regular Canguages.

Outline

- 6.1 NFA Implemented With Backtracking Search
- 6.2 NFA Implemented With Bit-Mapped Parallel Search
- 6.3 The Subset Construction
- 6.4 NFAs Are Exactly As Powerful As DFAs
- 6.5 DFA Or NFA?

An NFA Example

- $L(N)$ is the language strings over the alphabet $\{0,1\}$ that have a 1 as the next-to-last symbol
- We will implement it with backtracking search in Java
- We will use a three-dimensional transition array
- delta[s,c-'0'] will be an array of 0 or more possible next states

```
/**
    * A nondeterministic finite-state automaton that
    * recognizes strings of 0s and 1s with 1 as the
    * next-to-last character.
    */
public class NFA1 {
```

```
/*
    * The transition function represented as an array.
    * The entry at delta[s,c-'0'] is an array of 0 or
    * more ints, one for each possible move from
    * state s on character c.
    */
private static int[][][] delta =
    {{{0},{0,1}}, // delta[q0,0], delta[q0,1]
    {{2},{2}}, // delta[q1,0], delta[q1,1]
    {{},{}}}; // delta[q2,0], delta[q2,1]
```

```
/**
    * Test whether there is some path for the NFA to
    * reach an accepting state from the given state,
    * reading the given string at the given character
    * position.
    * @param s the current state
    * @param in the input string
    * @param pos index of the next char in the string
    * @return true iff the NFA accepts on some path
    */
private static boolean accepts
        (int s, String in, int pos) {
    if (pos==in.length()) { // if no more to read
        return (s==2); // accept iff final state is q2
    }
```

```
char c = in.charAt(pos++); // get char and advance
int[] nextStates;
try {
    nextStates = delta[s][c-'0'];
}
catch (ArrayIndexOutOfBoundsException ex) {
    return false; // no transition, just reject
}
```

// At this point, nextStates is an array of 0 or
// more next states. Try each move recursively;
// if it leads to an accepting state return true.
for (int $i=0 ; i<n e x t S t a t e s . l e n g t h ; i++) ~\{$
if (accepts (nextStates[i], in, pos)) return true;
\}
return false; // all moves fail, return false
\}

```
    /**
            * Test whether the NFA accepts the string.
            * @param in the String to test
            * @return true iff the NFA accepts on some path
            */
    public static boolean accepts(String in) {
    return accepts(0, in, 0); // start in q0 at char 0
    }
}
```

Not object-oriented: all static methods
All recursive search information is carried in the parameters Usage example:
if (NFA1.accepts(s)) ...

Outline

- 6.1 NFA Implemented With Backtracking Search
- 6.2 NFA Implemented With Bit-Mapped Parallel Search
- 6.3 The Subset Construction
- 6.4 NFAs Are Exactly As Powerful As DFAs
- 6.5 DFA Or NFA?

Parallel Search

- The previous implementation was a backtracking search
- Try one sequence of moves
- If that fails, back up a try another
- Keep going until you find an accepting sequence, or run out of sequences to try
- You can also search all sequences at once
- Instead of keeping track of one current state, keep track of the set of all possible states

Bit-Coded Sets

- We'll use machine words to represent sets
- One bit position for each state, with a 1 at that position if the state is in the set

The set $\left\{q_{1}, q_{2}\right\}$

The set $\left\{q_{0}, q_{2}\right\}$

Bit-Coded Sets in Java

- The << operator in Java shifts an integer to the left
- We're using $1 \ll i$ for state i
- The I operator combines integers using logical OR

The set $\left\{q_{1}, q_{2}\right\}$
Java: $1 \ll 1$ | $1 \ll 2$

The set $\left\{q_{0}, q_{2}\right\}$ Java: $1 \ll 0$ | $1 \ll 2$

/**

* A nondeterministic finite-state automaton that
* recognizes strings with 0 as the next-to-last
* character.
*/
public class NFA2 \{

```
/*
    * The current set of states, encoded bitwise:
    * state i is represented by the bit 1<<<i.
    */
private int stateSet;
/**
    * Reset the current state set to {the start state}.
    */
public void reset() {
    stateSet = 1<<0; // {q0}
}
```

/*

* The transition function represented as an array. * The set of next states from a given state s and * character c is at delta[s,c-'0'].
*/
static private int[][] delta =

$$
\{\{1 \ll 0,1 \ll 0 \mid 1 \ll 1\}, / / \text { delta }[q 0,0]=\{q 0\}
$$

$/ /$ delta $[q 0,1]=\{q 0, q 1\}$
$\{1 \ll 2,1 \ll 2\}, / / \operatorname{delta}[q 1,0]=\{q 2\}$
// delta $[q 1,1]=\{q 2\}$
$\{0,0\}\} ; / / \operatorname{delta}[q 2,0]=\{ \}$
// delta[q2,1] $=\{ \}$

```
/**
    * Make one state-set to state-set transition on
    * each char in the given string.
    * @param in the String to use
    */
public void process(String in) {
    for (int i = 0; i < in.length(); i++) {
        char c = in.charAt(i);
        int nextSS = 0; // next state set, initially empty
        for (int s = 0; s <= 2; s++) { // for each state s
            if ((stateSet&(1<<s)) != 0) { // if maybe in s
                try {
                    nextSS |= delta[s][c-'0'];
                }
                catch (ArrayIndexOutOfBoundsException ex) {
                        // in effect, nextSS |= 0
                }
            }
        }
        stateSet = nextSS; // new state set after c
    }
}
```

```
/**
* Test whether the NFA accepted the string.
* @return true iff the final set includes
* an accepting state
*/
    public boolean accepted() {
        return (stateSet&(1<<2))!=0; // true if q2 in set
    }
}
```

Usage example:

```
NFA2 m = new NFA2();
m.reset();
m.process(s) ;
if (m.accepted()) ...
```


Larger NFAs

- Generalizes easily for NFAs of up to 32 states
- Easy to push it up to 64 (using long instead of int)
- Harder to implement above 64 states
- Could use an array of $[n / 32\rceil$ int variables to represent n states
- That would make process slower and more complicated

Outline

- 6.1 NFA Implemented With Backtracking Search
- 6.2 NFA Implemented With Bit-Mapped Parallel Search
- 6.3 The Subset Construction
- 6.4 NFAs Are Exactly As Powerful As DFAs
- 6.5 DFA Or NFA?

From NFA To DFA

- For any NFA, there is a DFA that recognizes the same language
- Proof is by construction: a DFA that keeps track of the set of states the NFA might be in
- This is called the subset construction
- First, an example starting from this NFA:

- Initially, the set of states the NFA could be in is just $\left\{q_{0}\right\}$
- So our DFA will keep track of that using a start state labeled $\left\{q_{0}\right\}$:

- Now suppose the set of states the NFA could be in is $\left\{q_{0}\right\}$, and it reads a 0
- The set of possible states after reading the 0 is $\left\{q_{0}\right\}$, so we can show that transition:

- Suppose the set of states the NFA could be in is $\left\{q_{0}\right\}$, and it reads a 1
- The set of possible states after reading the 1 is $\left\{q_{0}, q_{1}\right\}$, so we need another state:

- From $\left\{q_{0}, q_{1}\right\}$ on a 0 , the next set of possible states is $\delta\left(q_{0}, 0\right) \cup \delta\left(q_{1}, 0\right)=\left\{q_{0}, q_{2}\right\}$
- From $\left\{q_{0}, q_{1}\right\}$ on a 1 , the next set of possible states is $\delta\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right)=\left\{q_{0}, q_{1}, q_{2}\right\}$
- Adding these transitions and states, we get...

And So On

- The DFA construction continues
- Eventually, we find that no further states are generated
- That's because there are only finitely many possible sets of states: $P(Q)$
- In our example, we have already found all sets of states reachable from $\left\{q_{0}\right\} \ldots$

Accepting States

- It only remains to choose the accepting states
- An NFA accepts x if its set of possible states after reading x includes at least one accepting state
- So our DFA should accept in all sets that contain at least one NFA accepting state

Lemma 6.3

If $L=L(N)$ for some NFA N, then L is a regular language.

- Suppose L is $L(N)$ for some NFA $N=\left(Q_{N}, \Sigma, \delta_{N}, q_{N}, F_{N}\right)$
- Construct a new DFA $D=\left(Q_{D}, \Sigma, \delta_{D}, q_{D}, F_{D}\right)$, where:

$$
\begin{aligned}
Q_{D} & =P\left(Q_{N}\right) \\
\delta_{D}(R, a) & =\bigcup_{r \in R} \delta_{N}^{*}(r, a), \text { for all } R \in Q_{D} \text { and } a \in \Sigma \\
q_{D} & =\delta_{N}^{*}\left(q_{N}, \varepsilon\right) \\
F_{D} & =\left\{R \in Q_{D} \mid R \cap F_{N} \neq\{ \}\right\}
\end{aligned}
$$

Lemma 6.3, Proof Continued

- By construction we have, for all $x \in \Sigma^{*}$,

$$
\delta_{D}^{*}\left(q_{D}, x\right)=\delta_{N}^{*}\left(q_{N}, x\right)
$$

jump can be bridged by routine induction

- D simulates N 's behavior on each input x
- D accepts if and only if N accepts
- $L=L(N)=L(D)$
- L is a regular language

Implementation Note

- The subset construction defined the DFA transition function by

$$
\delta_{D}(R, a)=\bigcup_{r \in R} \delta_{N}^{*}(r, a)
$$

- This is exactly what process computed in its inner loop, in our bit-mapped implementation in Java
- So that implementation really just computes the subset construction, one step for each input symbol

Start State Note

- In the subset construction, the start state for the new DFA is

$$
q_{D}=\delta_{N}^{*}\left(q_{N}, \varepsilon\right)
$$

- Often this is the same as $q_{D}=\left\{q_{N}\right\}$, as in our earlier example
- But the difference is important if there are ε-transitions from the NFA's start state

Unreachable State Note

- The formal subset construction generates all states $Q_{D}=P\left(Q_{N}\right)$
- These may not all be reachable from the DFA's start state
- In our earlier example, only 4 states were reachable, but $\left|P\left(Q_{N}\right)\right|=8$
- Unreachable states don't affect $L(D)$
- When doing the construction by hand, it is usually better to include only the reachable states

Empty-Set State Note

- The empty set is a subset of every set
- So the full subset construction always produces a DFA state for $\}$
- This is reachable from the start state if there is some string x for which the NFA has no legal sequence of moves: $\delta_{N}{ }^{*}\left(q_{N}, x\right)=\{ \}$
- For example, this NFA, with $L(N)=\{\varepsilon\}$

$$
\begin{aligned}
& \delta_{o}\left(\left\{q_{0}\right\}, 0\right)=\bigcup_{r \in\left\{q_{0}\right\}} \delta_{N}(r, 0)=\{ \} \\
& \delta_{o}\left(\left\{q_{0}\right\}, 1\right)=\bigcup_{r \in\left\{q_{0}\right\}} \delta_{N}^{*}(r, 1)=\{ \}
\end{aligned}
$$

- $P\left(\left\{q_{0}\right\}\right)=\left\{\{ \},\left\{q_{0}\right\}\right\}$
- A 2-state DFA

$$
\delta_{0}(\{ \}, 0)=\bigcup_{r \in\{ \}} \delta_{N}(r, 0)=\{ \}
$$

$$
\delta_{o}(\{ \}, 1)=\bigcup_{r \in\{ \}} \delta_{N}(r, 1)=\{ \}
$$

Trap State Provided

- The subset construction always provides a state for $\}$
- And it is always the case that

$$
\delta_{D}(\{ \}, a)=\bigcup_{r \in\{ \}} \delta_{N}^{*}(r, a)=\{ \}
$$

so the $\}$ state always has transitions back to itself for every symbol a in the alphabet

- It is a non-accepting trap state

Outline

- 6.1 NFA Implemented With Backtracking Search
- 6.2 NFA Implemented With Bit-Mapped Parallel Search
- 6.3 The Subset Construction
- 6.4 NFAs Are Exactly As Powerful As DFAs
- 6.5 DFA Or NFA?

From DFA To NFA

- This direction is much easier
- A DFA is like a special case of an NFA, with exactly one transition from every state on every symbol
- So it is easy to show that whenever there is a DFA M with $L(M)=L$ (so L is regular), there is an NFA N with $L(N)=L$
- There's just a little technicality involved in changing the type of the δ function

Lemma 6.4

If L is any regular language, there is

 some NFA N for which $L(N)=L$.- Let L be any regular language
- By definition there must be some DFA
$M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with $L(M)=L$
- Define a new NFA $N=\left(Q, \Sigma, \delta^{\prime}, q_{0}, F\right)$, where $\delta^{\prime}(q, a)=\{\delta(q, a)\}$ for all $q \in$ Q and $a \in \Sigma$, and $\delta^{\prime}(q, \varepsilon)=\{ \}$ for all $q \in Q$

```
jump can be bridged
``` by routine induction
» Now \(\delta^{\prime *}(q, x)=\left\{\delta^{*}(q, x)\right\}\), for all \(q \in Q\) and \(x \in \Sigma^{*}\)
" Thus \(L(N)=L(M)=L\)

\section*{Theorem 6.4}

\section*{A language \(L\) is \(L(N)\) for some NFA \(N\) if and only if \(L\) is a regular language.}
- Follows immediately from the previous lemmas
- Allowing nondeterminism in finite automata can make them more compact and easier to construct
- But in the sense of Theorem 6.4, it neither weakens nor strengthens them

\section*{DFA, Pro And Con}
- Pro
- Faster and simpler
- Con
- There are languages for which DFA-based implementation takes exponentially more space than NFA-based
- Harder to extend for non-regular constructs
- Example: scanner in a compiler
- Speed is critical
- Token languages do not usually bring out the exponential-size pathology of DFAs

\section*{NFA, Pro And Con}
- Pro
- Easier to extend for non-regular language constructs
- No exponential-space pathologies
- Con
- Slower and trickier
- Example: regular-expression programming language features (Perl, Python, Ruby, etc.)
- Need to handle non-regular constructs as well as regular ones
- More about these when we look at regular expressions

\section*{Hybrids}
- Some applications use both techniques in combination
- Use DFA techniques for purely regular parts, but switch to NFA techniques when non-regular extensions are needed
- Use NFA techniques but cache frequently-used state sets and transitions
- A spectrum of techniques, not just two points```

