
1

Chapter Two: 
Finite Automata

Formal Language, chapter 6, slide 1

2

The problem with implementing NFAs is that, being nondeterministic,
they do not really define computational procedures for testing language

membership. To implement an NFA we must give a computational
procedure that can look at a string and decide whether the NFA has at

least one sequence of legal transitions on that string leading to an
accepting state. This seems to require searching through all legal

sequences for the given input string—but how?

One approach is to implement a direct backtracking search. Another is
to convert the NFA into a DFA and implement that instead. This

conversion is both useful and theoretically interesting: the fact that it
is always possible shows that in spite of their extra flexibility, NFAs
have exactly the same power as DFAs. They can define exactly the

regular languages.

Formal Language, chapter 6, slide 2

3

Outline

• 6.1 NFA Implemented With Backtracking
Search

• 6.2 NFA Implemented With Bit-Mapped
Parallel Search

• 6.3 The Subset Construction
• 6.4 NFAs Are Exactly As Powerful As DFAs
• 6.5 DFA Or NFA?

Formal Language, chapter 6, slide 3

4

An NFA Example

• L(N) is the language strings over the alphabet {0,1} that have a 1
as the next-to-last symbol

• We will implement it with backtracking search in Java
• We will use a three-dimensional transition array
• delta[s,c-'0'] will be an array of 0 or more possible next

states

 q0 q1

1 q2

0,1

0,1

Formal Language, chapter 6, slide 4

5

/**  
 * A nondeterministic finite-state automaton that  
 * recognizes strings of 0s and 1s with 1 as the  
 * next-to-last character.  
 */  
public class NFA1 {  
 
 /*  
 * The transition function represented as an array. 
 * The entry at delta[s,c-'0'] is an array of 0 or 
 * more ints, one for each possible move from  
 * state s on character c.  
 */  
 private static int[][][] delta =  
 {{{0},{0,1}}, // delta[q0,0], delta[q0,1] 
 {{2},{2}}, // delta[q1,0], delta[q1,1] 
 {{},{}}}; // delta[q2,0], delta[q2,1]

Formal Language, chapter 6, slide 5

6

/**
 * Test whether there is some path for the NFA to 
 * reach an accepting state from the given state, 
 * reading the given string at the given character 
 * position.  
 * @param s the current state  
 * @param in the input string  
 * @param pos index of the next char in the string 
 * @return true iff the NFA accepts on some path 
 */  
private static boolean accepts  
 (int s, String in, int pos) {  
 if (pos==in.length()) { // if no more to read 
 return (s==2); // accept iff final state is q2 
 }

Formal Language, chapter 6, slide 6

7

 char c = in.charAt(pos++); // get char and advance
 int[] nextStates;  
 try {  
 nextStates = delta[s][c-'0'];  
 }  
 catch (ArrayIndexOutOfBoundsException ex) { 
 return false; // no transition, just reject 
 }  
 
 // At this point, nextStates is an array of 0 or 
 // more next states. Try each move recursively; 
 // if it leads to an accepting state return true. 
 
 for (int i=0; i < nextStates.length; i++) { 
 if (accepts(nextStates[i], in, pos)) return true; 
 }  
 
 return false; // all moves fail, return false 
}

Formal Language, chapter 6, slide 7

8

 /**  
 * Test whether the NFA accepts the string. 
 * @param in the String to test  
 * @return true iff the NFA accepts on some path 
 */  
 public static boolean accepts(String in) { 
 return accepts(0, in, 0); // start in q0 at char 0 
 }  
}

Not object-oriented: all static methods
All recursive search information is carried in the parameters
Usage example:

 if (NFA1.accepts(s)) ...

Formal Language, chapter 6, slide 8

9

Outline

• 6.1 NFA Implemented With Backtracking
Search

• 6.2 NFA Implemented With Bit-Mapped
Parallel Search

• 6.3 The Subset Construction
• 6.4 NFAs Are Exactly As Powerful As DFAs
• 6.5 DFA Or NFA?

Formal Language, chapter 6, slide 9

10

Parallel Search

• The previous implementation was a
backtracking search
– Try one sequence of moves
– If that fails, back up a try another
– Keep going until you find an accepting sequence,

or run out of sequences to try
• You can also search all sequences at once
• Instead of keeping track of one current state,

keep track of the set of all possible states

Formal Language, chapter 6, slide 10

11

Bit-Coded Sets

• We'll use machine words to represent sets
• One bit position for each state, with a 1 at that position if the

state is in the set

 q1 q2 q3 q31 q0

1 0 1 0 0 …

The set {q1,q2}

 q1 q2 q3 q31 q0

0 1 1 0 0 …

The set {q0,q2}

Formal Language, chapter 6, slide 11

12

Bit-Coded Sets in Java

• The << operator in Java shifts an integer to the left
• We're using 1<<i for state i
• The | operator combines integers using logical OR

The set {q1,q2}
Java: 1<<1 | 1<<2

The set {q0,q2}
Java: 1<<0 | 1<<2

 q1 q2 q3 q31 q0

1 0 1 0 0 …

 q1 q2 q3 q31 q0

0 1 1 0 0 …

Formal Language, chapter 6, slide 12

13

/**  
 * A nondeterministic finite-state automaton that 
 * recognizes strings with 0 as the next-to-last 
 * character.  
 */  
public class NFA2 {  
 
 /*  
 * The current set of states, encoded bitwise:  
 * state i is represented by the bit 1<<i. 
 */  
 private int stateSet;

 /**  
 * Reset the current state set to {the start state}. 
 */  
 public void reset() {  
 stateSet = 1<<0; // {q0}  
 }

Formal Language, chapter 6, slide 13

14

 /*  
 * The transition function represented as an array. 
 * The set of next states from a given state s and  
 * character c is at delta[s,c-'0']. 
 */  
 static private int[][] delta =  
 {{1<<0, 1<<0|1<<1}, // delta[q0,0] = {q0} 
 // delta[q0,1] = {q0,q1} 
 {1<<2, 1<<2}, // delta[q1,0] = {q2} 
 // delta[q1,1] = {q2} 
 {0, 0}}; // delta[q2,0] = {}  
 // delta[q2,1] = {}

Formal Language, chapter 6, slide 14

15

 /**  
 * Make one state-set to state-set transition on  
 * each char in the given string.  
 * @param in the String to use  
 */  
 public void process(String in) {  
 for (int i = 0; i < in.length(); i++) {  
 char c = in.charAt(i);  
 int nextSS = 0; // next state set, initially empty 
 for (int s = 0; s <= 2; s++) { // for each state s 
 if ((stateSet&(1<<s)) != 0) { // if maybe in s 
 try {  
 nextSS |= delta[s][c-'0'];  
 }  
 catch (ArrayIndexOutOfBoundsException ex) { 
 // in effect, nextSS |= 0  
 }  
 }  
 }  
 stateSet = nextSS; // new state set after c 
 }  
 }

Formal Language, chapter 6, slide 15

16

 /**  
 * Test whether the NFA accepted the string. 
 * @return true iff the final set includes  
 * an accepting state  
 */  
 public boolean accepted() {  
 return (stateSet&(1<<2))!=0; // true if q2 in set 
 }  
}

Usage example:

 NFA2 m = new NFA2();  
 m.reset();  
 m.process(s);  
 if (m.accepted()) ...

Formal Language, chapter 6, slide 16

17

Larger NFAs

• Generalizes easily for NFAs of up to 32 states
• Easy to push it up to 64 (using long instead

of int)
• Harder to implement above 64 states
• Could use an array of ⎡n/32⎤ int variables to

represent n states
• That would make process slower and more

complicated

Formal Language, chapter 6, slide 17

18

Outline

• 6.1 NFA Implemented With Backtracking
Search

• 6.2 NFA Implemented With Bit-Mapped
Parallel Search

• 6.3 The Subset Construction
• 6.4 NFAs Are Exactly As Powerful As DFAs
• 6.5 DFA Or NFA?

Formal Language, chapter 6, slide 18

19

From NFA To DFA

• For any NFA, there is a DFA that recognizes
the same language

• Proof is by construction: a DFA that keeps
track of the set of states the NFA might be in

• This is called the subset construction
• First, an example starting from this NFA:

q0
0,1 q2

0,1

q1

1

Formal Language, chapter 6, slide 19

20

• Initially, the set of states the NFA could be in is
just {q0}

• So our DFA will keep track of that using a start
state labeled {q0}:

q0
0,1 q2

0,1

q1

1

...

...

1

0

{q0}

Formal Language, chapter 6, slide 20

21

• Now suppose the set of states the NFA could
be in is {q0}, and it reads a 0

• The set of possible states after reading the 0
is {q0}, so we can show that transition:

q0 q1

1 q2

0,1

0,1

...
1

{q0}

0

Formal Language, chapter 6, slide 21

22

• Suppose the set of states the NFA could be in
is {q0}, and it reads a 1

• The set of possible states after reading the 1
is {q0,q1}, so we need another state:

q0 q1

1 q2

0,1

0,1

...

...

1

0

{q0}

1
0 {q0,q1}

Formal Language, chapter 6, slide 22

23

• From {q0,q1} on a 0, the next set of possible
states is δ(q0,0) ∪ δ(q1,0) = {q0,q2}

• From {q0,q1} on a 1, the next set of possible
states is δ(q0,1) ∪ δ(q1,1) = {q0,q1,q2}

• Adding these transitions and states, we get…

q0 q1

1 q2

0,1

0,1

Formal Language, chapter 6, slide 23

24

q0 q1

1 q2

0,1

0,1

...

...

...

...

1

0

1

0

{q0}

1
0 {q0,q1}

{q0,q2}

{q0,q1,q2}

1
0

Formal Language, chapter 6, slide 24

25

And So On

• The DFA construction continues
• Eventually, we find that no further states are

generated
• That's because there are only finitely many

possible sets of states: P(Q)
• In our example, we have already found all sets

of states reachable from {q0}…

Formal Language, chapter 6, slide 25

26

q0 q1

1 q2

0,1

0,1

{q0}

1
0 {q0,q1}

{q0,q2}

{q0,q1,q2}

0

1
0

1
1

0

Formal Language, chapter 6, slide 26

27

Accepting States

• It only remains to choose the accepting states
• An NFA accepts x if its set of possible states

after reading x includes at least one accepting
state

• So our DFA should accept in all sets that
contain at least one NFA accepting state

Formal Language, chapter 6, slide 27

28

q0 q1

1 q2

0,1

0,1

{q0}

1
0 {q0,q1}

{q0,q2}

{q0,q1,q2}

0

1
0

1
1

0

Formal Language, chapter 6, slide 28

29

Lemma 6.3

• Suppose L is L(N) for some NFA N = (QN, Σ, δN, qN, FN)

• Construct a new DFA D = (QD, Σ, δD, qD, FD), where:
 
 
 

If L = L(N) for some NFA N, then L is
a regular language.

€

QD = P QN()
δD R,a() = δN

* r ,a()
r ∈R
∪ , for all R ∈ QD and a ∈ Σ

qD = δN
* qN,ε()

FD = R ∈ QD | R∩FN ≠ {}{ }

Formal Language, chapter 6, slide 29

30

Lemma 6.3, Proof Continued

• By construction we have, for all x ∈ Σ*, 
 

• D simulates N’s behavior on each input x
• D accepts if and only if N accepts
• L = L(N) = L(D)
• L is a regular language

€

δD
* qD,x() = δN

* qN,x() jump can be bridged
by routine induction

Formal Language, chapter 6, slide 30

31

Implementation Note
• The subset construction defined the DFA

transition function by 
 

• This is exactly what process computed in its
inner loop, in our bit-mapped implementation
in Java

• So that implementation really just computes
the subset construction, one step for each
input symbol

€

δD R,a() = δN
* r ,a()

r ∈R
∪

Formal Language, chapter 6, slide 31

32

Start State Note

• In the subset construction, the start state for
the new DFA is  
 

• Often this is the same as qD = {qN}, as in our
earlier example

• But the difference is important if there are  
ε-transitions from the NFA's start state

€

qD = δN
* qN,ε()

Formal Language, chapter 6, slide 32

33

Unreachable State Note

• The formal subset construction generates all states
QD = P(QN)

• These may not all be reachable from the DFA's start
state

• In our earlier example, only 4 states were reachable,  
but |P(QN)| = 8

• Unreachable states don't affect L(D)
• When doing the construction by hand, it is usually

better to include only the reachable states

Formal Language, chapter 6, slide 33

34

Empty-Set State Note

• The empty set is a subset of every set
• So the full subset construction always

produces a DFA state for {}
• This is reachable from the start state if there is

some string x for which the NFA has no legal
sequence of moves: δN*(qN,x) = {}

• For example, this NFA, with L(N) = {ε}

q0

Formal Language, chapter 6, slide 34

35

• P({q0}) = { {}, {q0} }
• A 2-state DFA

{q0}

0,1 {}

0,1

q0

€

δD q0{ },0() = δN
* r ,0()

r ∈ q0{ }
∪ = { }

δD q0{ },1() = δN
* r ,1()

r ∈ q0{ }
∪ = { }

δD { },0() = δN
* r,0()

r ∈{ }
∪ = { }

δD { },1() = δN
* r,1()

r ∈{ }
∪ = { }

Formal Language, chapter 6, slide 35

36

Trap State Provided

• The subset construction always provides a
state for {}

• And it is always the case that 
 
 
so the {} state always has transitions back to
itself for every symbol a in the alphabet

• It is a non-accepting trap state

€

δD { },a() = δN
* r,a()

r ∈{ }
∪ = { }

Formal Language, chapter 6, slide 36

37

Outline

• 6.1 NFA Implemented With Backtracking
Search

• 6.2 NFA Implemented With Bit-Mapped
Parallel Search

• 6.3 The Subset Construction
• 6.4 NFAs Are Exactly As Powerful As DFAs
• 6.5 DFA Or NFA?

Formal Language, chapter 6, slide 37

38

From DFA To NFA

• This direction is much easier
• A DFA is like a special case of an NFA, with

exactly one transition from every state on
every symbol

• So it is easy to show that whenever there is a
DFA M with L(M) = L (so L is regular), there is
an NFA N with L(N) = L

• There's just a little technicality involved in
changing the type of the δ function

Formal Language, chapter 6, slide 38

39

Lemma 6.4

• Let L be any regular language
• By definition there must be some DFA  

M = (Q, Σ, δ, q0, F) with L(M) = L

• Define a new NFA N = (Q, Σ, δ', q0, F), where δ'(q,a) = {δ(q,a)} for all q ∈
Q and a ∈ Σ, and δ'(q,ε) = {} for all q ∈ Q

» Now δ'*(q,x) = {δ*(q,x)},  
for all q ∈ Q and x ∈ Σ*

» Thus L(N) = L(M) = L

If L is any regular language, there is
some NFA N for which L(N) = L.

jump can be bridged
by routine induction

Formal Language, chapter 6, slide 39

40

Theorem 6.4

• Follows immediately from the previous lemmas
• Allowing nondeterminism in finite automata can make them more

compact and easier to construct
• But in the sense of Theorem 6.4, it neither weakens nor

strengthens them

A language L is L(N) for some NFA N if
and only if L is a regular language.

Formal Language, chapter 6, slide 40

41

DFA, Pro And Con

• Pro
– Faster and simpler

• Con
– There are languages for which DFA-based implementation takes

exponentially more space than NFA-based
– Harder to extend for non-regular constructs

• Example: scanner in a compiler
– Speed is critical
– Token languages do not usually bring out the exponential-size

pathology of DFAs

Formal Language, chapter 6, slide 41

42

NFA, Pro And Con

• Pro
– Easier to extend for non-regular language constructs
– No exponential-space pathologies

• Con
– Slower and trickier

• Example: regular-expression programming language features
(Perl, Python, Ruby, etc.)
– Need to handle non-regular constructs as well as  

regular ones
– More about these when we look at regular expressions

Formal Language, chapter 6, slide 42

43

Hybrids

• Some applications use both techniques in
combination
– Use DFA techniques for purely regular parts, but

switch to NFA techniques when non-regular
extensions are needed

– Use NFA techniques but cache frequently-used
state sets and transitions

• A spectrum of techniques, not just two points

Formal Language, chapter 6, slide 43

