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Chapter Two: 
Finite Automata
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The problem with implementing NFAs is that, being nondeterministic, 
they do not really define computational procedures for testing language 

membership.  To implement an NFA we must give a computational 
procedure that can look at a string and decide whether the NFA has at 

least one sequence of legal transitions on that string leading to an 
accepting state.  This seems to require searching through all legal 

sequences for the given input string—but how? 

One approach is to implement a direct backtracking search.  Another is 
to convert the NFA into a DFA and implement that instead.  This 

conversion is both useful and theoretically interesting: the fact that it 
is always possible shows that in spite of their extra flexibility, NFAs 
have exactly the same power as DFAs.  They can define exactly the 

regular languages.
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Outline

• 6.1 NFA Implemented With Backtracking 
Search 

• 6.2 NFA Implemented With Bit-Mapped 
Parallel Search 

• 6.3 The Subset Construction 
• 6.4 NFAs Are Exactly As Powerful As DFAs 
• 6.5 DFA Or NFA?
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An NFA Example

• L(N) is the language strings over the alphabet {0,1} that have a 1 
as the next-to-last symbol 

• We will implement it with backtracking search in Java 
• We will use a three-dimensional transition array 
• delta[s,c-'0'] will be an array of 0 or more possible next 

states

 
 q0 q1 

 

1 q2 
 

0,1 

0,1 
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/**  
 * A nondeterministic finite-state automaton that  
 * recognizes strings of 0s and 1s with 1 as the  
 * next-to-last character.  
 */  
public class NFA1 {  
 
  /*  
   * The transition function represented as an array. 
   * The entry at delta[s,c-'0'] is an array of 0 or 
   * more ints, one for each possible move from  
   * state s on character c.  
   */  
  private static int[][][] delta =  
     {{{0},{0,1}}, // delta[q0,0], delta[q0,1] 
      {{2},{2}},   // delta[q1,0], delta[q1,1] 
      {{},{}}};    // delta[q2,0], delta[q2,1]
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/** 
 * Test whether there is some path for the NFA to 
 * reach an accepting state from the given state, 
 * reading the given string at the given character 
 * position.  
 * @param s the current state  
 * @param in the input string  
 * @param pos index of the next char in the string 
 * @return true iff the NFA accepts on some path 
 */  
private static boolean accepts  
    (int s, String in, int pos) {  
  if (pos==in.length()) { // if no more to read 
    return (s==2); // accept iff final state is q2 
  }
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  char c = in.charAt(pos++); // get char and advance 
  int[] nextStates;  
  try {  
    nextStates = delta[s][c-'0'];  
  }  
  catch (ArrayIndexOutOfBoundsException ex) { 
    return false; // no transition, just reject 
  }  
 
  // At this point, nextStates is an array of 0 or 
  // more next states.  Try each move recursively; 
  // if it leads to an accepting state return true. 
 
  for (int i=0; i < nextStates.length; i++) { 
    if (accepts(nextStates[i], in, pos)) return true; 
  }  
 
  return false; // all moves fail, return false 
} 
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  /**  
   * Test whether the NFA accepts the string. 
   * @param in the String to test  
   * @return true iff the NFA accepts on some path 
   */  
  public static boolean accepts(String in) { 
    return accepts(0, in, 0); // start in q0 at char 0 
  }  
} 
  
  
Not object-oriented: all static methods 
All recursive search information is carried in the parameters 
Usage example: 
  
   if (NFA1.accepts(s)) ... 
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Parallel Search

• The previous implementation was a 
backtracking search 
– Try one sequence of moves 
– If that fails, back up a try another 
– Keep going until you find an accepting sequence, 

or run out of sequences to try 
• You can also search all sequences at once 
• Instead of keeping track of one current state, 

keep track of the set of all possible states
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Bit-Coded Sets

• We'll use machine words to represent sets 
• One bit position for each state, with a 1 at that position if the 

state is in the set

 q1 q2 q3 q31 q0 

1 0 1 0 0 … 

The set {q1,q2}

 q1 q2 q3 q31 q0 

0 1 1 0 0 … 

The set {q0,q2}
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Bit-Coded Sets in Java

• The << operator in Java shifts an integer to the left 
• We're using 1<<i for state i 
• The | operator combines integers using logical OR

The set {q1,q2} 
Java:  1<<1 | 1<<2

The set {q0,q2} 
Java:  1<<0 | 1<<2

 q1 q2 q3 q31 q0 

1 0 1 0 0 … 

 q1 q2 q3 q31 q0 

0 1 1 0 0 … 
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/**  
 * A nondeterministic finite-state automaton that 
 * recognizes strings with 0 as the next-to-last 
 * character.  
 */  
public class NFA2 {  
 
  /*  
   * The current set of states, encoded bitwise:  
   * state i is represented by the bit 1<<i. 
   */  
  private int stateSet; 

  /**  
   * Reset the current state set to {the start state}. 
   */  
  public void reset() {  
    stateSet = 1<<0; // {q0}  
  }
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  /*  
   * The transition function represented as an array. 
   * The set of next states from a given state s and  
   * character c is at delta[s,c-'0']. 
   */  
  static private int[][] delta =  
     {{1<<0, 1<<0|1<<1}, // delta[q0,0] = {q0} 
                         // delta[q0,1] = {q0,q1} 
      {1<<2, 1<<2}, // delta[q1,0] = {q2} 
                    // delta[q1,1] = {q2} 
      {0, 0}}; // delta[q2,0] = {}  
               // delta[q2,1] = {}
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  /**  
   * Make one state-set to state-set transition on  
   * each char in the given string.  
   * @param in the String to use  
   */  
  public void process(String in) {  
    for (int i = 0; i < in.length(); i++) {  
      char c = in.charAt(i);  
      int nextSS = 0; // next state set, initially empty 
      for (int s = 0; s <= 2; s++) { // for each state s 
        if ((stateSet&(1<<s)) != 0) { // if maybe in s 
          try {  
            nextSS |= delta[s][c-'0'];  
          }  
          catch (ArrayIndexOutOfBoundsException ex) { 
            // in effect, nextSS |= 0  
          }  
        }  
      }  
      stateSet = nextSS; // new state set after c 
    }  
  }
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 /**  
   * Test whether the NFA accepted the string. 
   * @return true iff the final set includes  
   *         an accepting state  
   */  
  public boolean accepted() {  
    return (stateSet&(1<<2))!=0; // true if q2 in set 
  }  
} 

Usage example: 

    NFA2 m = new NFA2();  
    m.reset();  
    m.process(s);  
    if (m.accepted()) ... 
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Larger NFAs

• Generalizes easily for NFAs of up to 32 states 
• Easy to push it up to 64 (using long instead 

of int) 
• Harder to implement above 64 states 
• Could use an array of ⎡n/32⎤ int variables to 

represent n states 
• That would make process slower and more 

complicated
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From NFA To DFA

• For any NFA, there is a DFA that recognizes 
the same language 

• Proof is by construction: a DFA that keeps 
track of the set of states the NFA might be in 

• This is called the subset construction 
• First, an example starting from this NFA:

 

q0 
0,1 q2 

 

0,1 

q1 
 

1 
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• Initially, the set of states the NFA could be in is 
just {q0} 

• So our DFA will keep track of that using a start 
state labeled {q0}:

 

q0 
0,1 q2 

 

0,1 

q1 
 

1 

 
 

... 

... 

1 

0 

{q0} 
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• Now suppose the set of states the NFA could 
be in is {q0}, and it reads a 0 

• The set of possible states after reading the 0 
is {q0}, so we can show that transition:

 
q0 q1 

 

1 q2 
 

0,1 

0,1 

 

... 
1 

{q0} 
 

0 
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• Suppose the set of states the NFA could be in 
is {q0}, and it reads a 1 

• The set of possible states after reading the 1 
is {q0,q1}, so we need another state:

 
q0 q1 

 

1 q2 
 

0,1 

0,1 

 
 

... 

... 

1 

0 

{q0} 
 

1 
0 {q0,q1} 
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• From {q0,q1} on a 0, the next set of possible 
states is δ(q0,0) ∪ δ(q1,0) = {q0,q2} 

• From {q0,q1} on a 1, the next set of possible 
states is δ(q0,1) ∪ δ(q1,1) = {q0,q1,q2} 

• Adding these transitions and states, we get…

 
q0 q1 

 

1 q2 
 

0,1 

0,1 
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q0 q1 

 

1 q2 
 

0,1 

0,1 

 
 

 

... 

... 

... 

... 

1 

0 

1 

0 

{q0} 
 

1 
0 {q0,q1} 

 

{q0,q2} 
 

{q0,q1,q2} 
 

1 
0 
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And So On

• The DFA construction continues  
• Eventually, we find that no further states are 

generated 
• That's because there are only finitely many 

possible sets of states: P(Q) 
• In our example, we have already found all sets 

of states reachable from {q0}…
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q0 q1 

 

1 q2 
 

0,1 

0,1 

 

{q0} 
 

1 
0 {q0,q1} 

 

{q0,q2} 
 

{q0,q1,q2} 
 

0 

1 
0 

1 
1 

0 
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Accepting States

• It only remains to choose the accepting states 
• An NFA accepts x if its set of possible states 

after reading x includes at least one accepting 
state 

• So our DFA should accept in all sets that 
contain at least one NFA accepting state
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q0 q1 

 

1 q2 
 

0,1 

0,1 

 

{q0} 
 

1 
0 {q0,q1} 

 

{q0,q2} 
 

{q0,q1,q2} 
 

0 

1 
0 

1 
1 

0 
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Lemma 6.3

• Suppose L is L(N) for some NFA N = (QN, Σ, δN, qN, FN) 

• Construct a new DFA D = (QD, Σ, δD, qD, FD), where: 
 
 
 

If L = L(N) for some NFA N, then L is 
a regular language.

      

€ 

QD = P QN( )
δD R,a( ) = δN

* r ,a( )
r ∈R
∪ ,  for all R ∈ QD and a ∈ Σ

qD = δN
* qN,ε( )

FD = R ∈ QD | R∩FN ≠ {}{ }
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Lemma 6.3, Proof Continued

• By construction we have, for all x ∈ Σ*, 
 

• D simulates N’s behavior on each input x 
• D accepts if and only if N accepts 
• L = L(N) = L(D)  
• L is a regular language

    

€ 

δD
* qD,x( ) = δN

* qN,x( ) jump can be bridged 
by routine induction
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Implementation Note
• The subset construction defined the DFA 

transition function by 
 

• This is exactly what process computed in its 
inner loop, in our bit-mapped implementation 
in Java 

• So that implementation really just computes 
the subset construction, one step for each 
input symbol

      

€ 

δD R,a( ) = δN
* r ,a( )

r ∈R
∪
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Start State Note

• In the subset construction, the start state for 
the new DFA is  
 

• Often this is the same as qD = {qN}, as in our 
earlier example 

• But the difference is important if there are  
ε-transitions from the NFA's start state

    

€ 

qD = δN
* qN,ε( )
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Unreachable State Note

• The formal subset construction generates all states 
QD = P(QN) 

• These may not all be reachable from the DFA's start 
state 

• In our earlier example, only 4 states were reachable,  
but |P(QN)| = 8 

• Unreachable states don't affect L(D) 
• When doing the construction by hand, it is usually 

better to include only the reachable states
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Empty-Set State Note

• The empty set is a subset of every set 
• So the full subset construction always 

produces a DFA state for {} 
• This is reachable from the start state if there is 

some string x for which the NFA has no legal 
sequence of moves: δN*(qN,x) = {} 

• For example, this NFA, with L(N) = {ε}
 
q0 
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• P({q0}) = { {}, {q0} } 
• A 2-state DFA

 
{q0} 

 

0,1 {} 
 

0,1 

 
q0 
 

      

€ 

δD q0{ },0( ) = δN
* r ,0( )

r ∈ q0{ }
∪ = { }

δD q0{ },1( ) = δN
* r ,1( )

r ∈ q0{ }
∪ = { }

δD { },0( ) = δN
* r,0( )

r ∈{ }
∪ = { }

δD { },1( ) = δN
* r,1( )

r ∈{ }
∪ = { }
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Trap State Provided

• The subset construction always provides a 
state for {} 

• And it is always the case that 
 
 
so the {} state always has transitions back to 
itself for every symbol a in the alphabet 

• It is a non-accepting trap state

      

€ 

δD { },a( ) = δN
* r,a( )

r ∈{ }
∪ = { }
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From DFA To NFA

• This direction is much easier 
• A DFA is like a special case of an NFA, with 

exactly one transition from every state on 
every symbol 

• So it is easy to show that whenever there is a 
DFA M with L(M) = L (so L is regular), there is 
an NFA N with L(N) = L 

• There's just a little technicality involved in 
changing the type of the δ function
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Lemma 6.4

• Let L be any regular language 
• By definition there must be some DFA  

M = (Q, Σ, δ, q0, F) with L(M) = L 

• Define a new NFA N = (Q, Σ, δ', q0, F), where δ'(q,a) = {δ(q,a)} for all q ∈ 
Q and a ∈ Σ, and δ'(q,ε) = {} for all q ∈ Q 

» Now δ'*(q,x) = {δ*(q,x)},  
for all q ∈ Q and x ∈ Σ*  

» Thus L(N) = L(M) = L

If L is any regular language, there is 
some NFA N for which L(N) = L.

jump can be bridged 
by routine induction
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Theorem 6.4

• Follows immediately from the previous lemmas 
• Allowing nondeterminism in finite automata can make them more 

compact and easier to construct 
• But in the sense of Theorem 6.4, it neither weakens nor 

strengthens them

A language L is L(N) for some NFA N if 
and only if L is a regular language.
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DFA, Pro And Con

• Pro 
– Faster and simpler 

• Con 
– There are languages for which DFA-based implementation takes 

exponentially more space than NFA-based 
– Harder to extend for non-regular constructs 

• Example: scanner in a compiler 
– Speed is critical 
– Token languages do not usually bring out the exponential-size 

pathology of DFAs
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NFA, Pro And Con

• Pro 
– Easier to extend for non-regular language constructs 
– No exponential-space pathologies 

• Con 
– Slower and trickier 

• Example: regular-expression programming language features 
(Perl, Python, Ruby, etc.)  
– Need to handle non-regular constructs as well as  

regular ones 
– More about these when we look at regular expressions
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Hybrids

• Some applications use both techniques in 
combination 
– Use DFA techniques for purely regular parts, but 

switch to NFA techniques when non-regular 
extensions are needed 

– Use NFA techniques but cache frequently-used 
state sets and transitions 

• A spectrum of techniques, not just two points
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