
1

Chapter Eight: 
Regular Expression Applications

Formal Language, chapter 8, slide 1

2

We have seen some of the implementation techniques related to
DFAs and NFAs. These important techniques are like tricks of the
programmer's trade, normally hidden from the end user. Not so with
regular expressions: they are often visible to the end user, and part of

the user interface of a variety of useful software tools.

Formal Language, chapter 8, slide 2

3

Outline

• 8.1 The egrep Tool
• 8.2 Non-Regular Regexps
• 8.3 Implementing Regexps
• 8.4 Regular Expressions in Java
• 8.5 The lex Tool

Formal Language, chapter 8, slide 3

4

Text File Search

• Unix tool: egrep
• Searches a text file for lines that contain a

substring matching a specified pattern
• Echoes all such lines to standard output

Formal Language, chapter 8, slide 4

5

Example: A Constant Substring
File names:

egrep command and results:

fred  
barney  
wilma  
betty

% egrep 'a' names  
barney  
wilma  
%

Formal Language, chapter 8, slide 5

6

More Than Simple Substrings

• egrep understands a language of patterns
• Various dialects of its pattern-language are

also used by many other tools
• Confusingly, these patterns are often called

regular expressions, but they differ from ours
• To keep the two ideas separate, we'll call the

text patterns used by egrep and other tools by
their common nickname: regexps

Formal Language, chapter 8, slide 6

7

A Regexp Dialect

* like our Kleene star: for any regexp x, x* matches strings that
are concatenations of zero or more strings from the language
specified by x

| like our +: for any regexps x and y, x|y matches strings that
match either x or y (or both)

() used for grouping
^ this special symbol at the start of the regexp allows it to match

only at the start of the line
$ this special symbol at the end of the regexp allows it to match

only at the end of the line
. matches any symbol (except the end-of-line marker)

Formal Language, chapter 8, slide 7

8

Example
File names:

egrep for a, followed by any string, followed by y:

fred  
barney  
wilma  
betty

% egrep 'a.*y' names  
barney  
%

Formal Language, chapter 8, slide 8

9

Example
File names:

egrep for odd-length string; what went wrong?

fred  
barney  
wilma  
betty

% egrep '.(..)*' names  
fred  
barney  
wilma  
betty  
%

Formal Language, chapter 8, slide 9

10

Example
File names:

egrep for odd-length line:

fred  
barney  
wilma  
betty

% egrep '^.(..)*$' names  
fred  
barney  
wilma  
betty  
%

Formal Language, chapter 8, slide 10

11

Example
File numbers:

egrep for numbers divisible by 3:

0  
1  
10  
11  
100  
101  
110  
111  
1000  
1001  
1010

% egrep '^(0|1(01*0)*1)*$' numbers  
0  
11  
110  
1001  
%

Formal Language, chapter 8, slide 11

12

Outline

• 8.1 The egrep Tool
• 8.2 Non-Regular Regexps
• 8.3 Implementing Regexps
• 8.4 Regular Expressions in Java
• 8.5 The lex Tool

Formal Language, chapter 8, slide 12

13

Capturing Parentheses

• Many regexp dialects can define more than
just the regular languages

• Capturing parentheses:
– \(r \) captures the text that was matched by the

regexp r
– \n matches the same text captured by the nth

previous capturing left parenthesis
• Found in grep (but not most versions of egrep)

Formal Language, chapter 8, slide 13

14

Example
File test:

grep for lines that consist of doubled strings:

abaaba  
ababa  
abbbabbb  
abbaabb

% grep '^\(.*\)\1$' test  
abaaba  
abbbabbb  
%

Formal Language, chapter 8, slide 14

15

More Than Regular

• The formal language corresponding to that
example is {xx | x ∈ Σ*}

• It turns out that this language is not regular
– Like DFAs, regular expressions can do only what

you could implement in a computer using a fixed,
finite amount of memory

– Capturing parentheses must remember a string
whose size is unbounded

• We'll see this more formally later

Formal Language, chapter 8, slide 15

16

Outline

• 8.1 The egrep Tool
• 8.2 Non-Regular Regexps
• 8.3 Implementing Regexps
• 8.4 Regular Expressions in Java
• 8.5 The lex Tool

Formal Language, chapter 8, slide 16

17

Many Regexp Tools

• Many programs make use of regexp dialects:
– Text tools like emacs, vi, and sed
– Compiler construction tools like lex
– Programming languages like Perl, Ruby, and

Python
– Program language libraries like those for Java and

the .NET languages
• How do all these systems implement regexp

matching?

Formal Language, chapter 8, slide 17

18

Implementing Regexps

• We've already seen how, roughly:
– Convert regexp to an NFA
– Simulate that
– Or, convert to DFA and simulate that

• Many implementation tricks are possible; we
haven't worried much about efficiency

• And some important details are different
because regexps are used to match
substrings

Formal Language, chapter 8, slide 18

19

Using a DFA

• Our basic DFA decides after it reads the whole string
• For regexps, we need to find whether any substring is accepted
• That means running the DFA repeatedly, on each successive

starting position
• Run the DFA until:

– it enters an accepting state: that's a match
– enters a non-accepting trap state: restart the DFA from the next

possible starting position
– hits the end of the string: restart the DFA from the next possible

starting position

Formal Language, chapter 8, slide 19

20

Which Match?

• Some tools needs to know which substring matched
• Capturing parentheses, for example
• If there is more than one match in a given string, which should

the tool find?
– The string abcab contains two substrings that match the regexp ab

• It isn't enough to specify the leftmost match: what if several
matches start at the same place?
– The string abb contains three substrings that match the regexp ab*,

and they all start at the first symbol

Formal Language, chapter 8, slide 20

21

Longest Leftmost

• Some tools are required to find the longest leftmost
match in a string
– The string abbcabb contains six matches for ab*
– The first abb is the longest leftmost match

• That means running the DFA past accepting states
• Run the DFA starting from each successive position,

until it enters a non-accepting trap or hits the end
– As you go, keep track of the last accepting state entered, and

the string position at the time
– At the end of this iteration, if any accepting state was

recorded, that is the longest leftmost match

Formal Language, chapter 8, slide 21

22

Using an NFA

• Similar accommodations are required
• Run from each successive starting position
• When an implementation using backtracking

finds a match, it cannot necessarily stop there
• If the longest match is required, it must

remember the match and continue
• Explore all paths through the NFA to make

sure the longest match is found

Formal Language, chapter 8, slide 22

23

Outline

• 8.1 The egrep Tool
• 8.2 Non-Regular Regexps
• 8.3 Implementing Regexps
• 8.4 Regular Expressions in Java
• 8.5 The lex Tool

Formal Language, chapter 8, slide 23

24

java.util.regex

• The Java package java.util.regex contains classes for
working with regexps in Java

• Two particularly important ones:
– The Pattern class

• A compiled version of a regexp, ready to be given an input string
to test

• A bit like a Java representation of an NFA
– The Matcher class

• Has a Pattern, an input string to run it on, and the current state
of the search for a match

• Can find matches within a string and report their locations

Formal Language, chapter 8, slide 24

25

Example

• A mini-grep written in Java
• We'll take a regexp from the command line,

and make it into a Pattern
• Then, for each line of the standard input:

– we'll make a Matcher for that line and use it to test
for a match with our Pattern

– If it matches, we'll echo the line to the standard
output

Formal Language, chapter 8, slide 25

26

import java.io.*;
import java.util.regex.*;

/**
 * A Java application to demonstrate the Java package
 * java.util.regex. We take one command-line argument,
 * which is treated as a regexp and compiled into a
 * Pattern. We then use that pattern to filter the
 * standard input, echoing to standard output only
 * those lines that match the Pattern.
 */

Formal Language, chapter 8, slide 26

27

class RegexFilter {
 public static void main(String[] args)
 throws IOException {

 Pattern p = Pattern.compile(args[0]); // the regexp
 BufferedReader in = // standard input
 new BufferedReader(new InputStreamReader(System.in));

 // Read and echo lines until EOF.

 String s = in.readLine();
 while (s!=null) {
 Matcher m = p.matcher(s);
 if (m.matches()) System.out.println(s);
 s = in.readLine();
 }
 }
}

Formal Language, chapter 8, slide 27

28

Example, Continued

• Now this Java application can be used to do
our divisible-by-three filtering:

% java RegexFilter '^(0|1(01*0)*1)*$' < numbers 
0  
11  
110  
1001  
%

Formal Language, chapter 8, slide 28

29

Outline

• 8.1 The egrep Tool
• 8.2 Non-Regular Regexps
• 8.3 Implementing Regexps
• 8.4 Regular Expressions in Java
• 8.5 The lex Tool

Formal Language, chapter 8, slide 29

30

Preconstructing Automata

• Applications like grep take a regexp as user input:
– Convert regexp to automaton
– Simulate the automaton on a text file
– Discard automaton when finished

• Other applications, like compilers, use the same regexp and
automaton each time

• It would be a waste of time to do the regexp-to-automaton
conversion each time the compiler is run

Formal Language, chapter 8, slide 30

31

The lex Tool

• lex preconstructs automata:
– Regexps as input
– C source code for a DFA as output

• Similar tools exist for many other output
languages

• Useful for applications like compilers that use
the same set of regexps over and over

Formal Language, chapter 8, slide 31

32

The lex Input File

• Definition section: a variety of preliminary definitions
• User subroutines: C code for extra C functions used

from inside the rules section
• In our examples, both these sections will be empty:

definition section 
%%  
rules section 
%%  
user subroutines

%%  
rules section 
%%

Formal Language, chapter 8, slide 32

33

Rules Section

• The rules section is a list of regexps
• Each regexp is followed by some C code, to

be executed whenever a match is found
• This example has two regexps with code

%%  
abc {fprintf(yyout, "Found one.\n");}  
.|\n {}  
%%

Formal Language, chapter 8, slide 33

34

Rules Section

• First regexp: abc
• Action when abc is matched: print a message

to the current output file (yyout), which is the
standard output in this case

%%  
abc {fprintf(yyout, "Found one.\n");}  
.|\n {}  
%%

Formal Language, chapter 8, slide 34

35

Rules Section

• Second regexp: .|\n
– . matches any symbol except end-of-line
– \n matches end-of-line

• Action when .|\n is matched: do nothing
• The string abc matches both regexps, but the lex-

generated code goes with the longest match

%%  
abc {fprintf(yyout, "Found one.\n");}  
.|\n {}  
%%

Formal Language, chapter 8, slide 35

36

Running lex

• Assuming our example is stored as abc.l
• flex is the gnu implementation of lex
• C code output by flex is stored in lex.yy.c
• The gcc command compiles the C code

– It puts the executable in abc (because of -o abc)
– It links with the special lex library (because of -ll)

% flex abc.l  
% gcc lex.yy.c -o abc –ll  
%

Formal Language, chapter 8, slide 36

37

Running The lex Program
• Suppose abctest contains these lines: 
 
 
 

• Then our lex program does this:

abc  
aabbcc  
abcabc

% abc < abctest  
Found one.  
Found one.  
Found one.  
%

Formal Language, chapter 8, slide 37

38

Example

• This lex program echoes numbers divisible by 3
• The same thing we've already done with Java and

with egrep
• The lex variable yytext gives us a way to access the

substring that matched the regexp

%%  
^(0|1(01*0)*1)*$ {fprintf(yyout, "%s\n", yytext);} 
.|\n {}  
%%

Formal Language, chapter 8, slide 38

39

Larger Applications

• For simple applications, the code produced by lex can be
compiled as a stand-alone program, as in the previous examples

• For most large applications, the code produced by lex is one of
many source files from which the full program is compiled

• Compilers are sometimes written this way:
– lex generates some source
– Other tools (like yacc) generate some source
– Some is written by hand

Formal Language, chapter 8, slide 39

