Chapter Nine: Advanced Topics in Regular Languages

Formal Language, chapter 9, slide 1

There are many more things to learn about finite automata than are covered in this book. There are many variations with interesting applications, and there is a large body of theory. Especially interesting, but beyond the scope of this book, are the various algebras that arise around finite automata. This chapter gives just a taste of some of these advanced topics.

## Outline

- 9.1 DFA Minimization
- 9.2 Two-Way Finite Automata
- 9.3 Finite-State Transducers
- 9.4 Advanced Regular Expressions

## **DFA** Minimization

- Questions of DFA size:
  - Given a DFA, can we find one with fewer states that accepts the same language?
  - What is the smallest DFA for a given language?
  - Is the smallest DFA unique, or can there be more than one "smallest" DFA for the same language?
- All these questions have neat answers...

## Eliminating Unnecessary States

- Unreachable states, like some of those introduced by the subset construction, can obviously be eliminated
- Even some of the reachable states may be redundant...

## Example: Equivalent States



- In both q<sub>3</sub> and q<sub>4</sub>, the machine rejects, no matter what the rest of the input string contains
- They're equivalent and can be combined...

## Still More Equivalent States



- In both q<sub>1</sub> and q<sub>2</sub>, the machine accepts if and only if the rest of the string consists of 0 or more as
- They're equivalent and can be combined...

#### Minimized



- No more equivalencies
- This is a minimum-state DFA for the language,  $\{xay \mid x \in \{b\}^* \text{ and } y \in \{a\}^*\}$

#### State Equivalence

- Informally: two states are equivalent when the machine's decision after any remaining input will be the same from either state
- Formally:
  - Define a little language L(M,q) for each state q:  $L(M,q) = \{x \in \Sigma^* \mid \delta^*(q,x) \in F\}$
  - That's the language of strings that would be accepted if q were used as the start state
  - Now we can define state equivalence: q and r are equivalent if and only if L(M,q) = L(M,r)



$$- L(M,q_0) = \{xay | x \in \{b\}^* \text{ and } y \in \{a\}^*\}$$

$$- L(M,q_1) = \{x \mid x \in \{a\}^*\}$$

$$- L(M,q_2) = \{x \mid x \in \{a\}^*\}$$

$$- L(M,q_3) = \{\}$$

$$- L(M,q_4) = \{$$

• So 
$$q_1 \equiv q_2$$
 and  $q_3 \equiv q_4$ 

## **DFA Minimization Procedure**

- Two steps:
  - 1. Eliminated states that are not reachable from the start state
  - 2. Combine all equivalent states, so that no two remaining states are equivalent to each other
- Step 2 is the construction of a new DFA whose states are the equivalence classes of the original: the *quotient construction*

## Theorem 9.1

Every regular language has a unique minimum-state DFA, and no matter what DFA for the language you start with, the minimization procedure finds it.

- (Stated here without proof)
- Resulting DFA is unique up to isomorphism
  - That is, unique except perhaps for state names, which of course have no effect on L(M)
- So our minimization procedure is safe and effective
  - Safe, in that it does not change L(M)
  - Effective, in that it finds the structurally unique smallest DFA for L(M)

## **Automating Minimization**

- Is there an algorithm that can efficiently detect equivalent states and so perform the minimization?
- Yes: a DFA with state set Q and alphabet Σ can be minimized in O(|Σ| |Q| log |Q|) time
- (reference in the book)

# **Minimizing NFAs**

- Results are not as clean for NFAs
- We can still eliminate unreachable states
- We can still combine equivalent states, using a similar definition of equivalence
- But the result is not necessarily a unique minimum-state NFA for the language
- (reference in the book)

## Outline

- 9.1 DFA Minimization
- 9.2 Two-Way Finite Automata
- 9.3 Finite-State Transducers
- 9.4 Advanced Regular Expressions

## Two-Way Finite Automata

- DFAs and NFAs read their input once, left to right
- We can try to make these models more powerful by allowing re-reading
- Treat the input like a tape, and allow the automaton to move its read head left or right on each move
  - Two-way deterministic finite automata (2DFA)
  - Two-way nondeterministic finite automata (2NFA)

#### 

- Input string  $x_1 x_2 \dots x_{n-1} x_n$
- Special endmarker symbols frame the input
- The head can't move past them

## **2DFA Differences**

- Transition function returns a pair of values:
  - The next state
  - The direction (L or R) to move the head
- Computation ends, not at the end of the string, but when a special state is entered
  - One accept state: halt and accept when entered
  - One reject state: halt and reject when entered
- Can these define more than the regular languages?

## Theorems 9.2.1 And 9.2.2

There is a 2DFA for a language L if and only if L is regular.

There is a 2NFA for a language *L* if and only if *L* is regular.

- (Stated here without proof)
- So adding two-way reading to finite automata does not increase their definitional power
- A little more tweaking will give us more power later:
  - adding the ability to write as well as read yields LBAs (linear bounded automata), which are much more powerful
  - Adding the ability to write unboundedly far past the end markers yields the Turing machines, still more powerful

## Outline

- 9.1 DFA Minimization
- 9.2 Two-Way Finite Automata
- 9.3 Finite-State Transducers
- 9.4 Advanced Regular Expressions

#### Finite-State Transducers

- Our DFAs and NFAs have a single bit of output: accept/reject
- For some applications we need more output than that
- Finite-state machines with string output are called *finite-state transducers*

## **Output On Each Transition**



- A transition labeled *a*,*x* works like a DFA transition labeled *a*, but also outputs string *x*
- Transforms input strings into output strings

#### Action For Input 10#11# #,0# 0,0 #,e $q_0$ $q_1$ $0,\varepsilon$ 1,0 ,#,0# 1,ε Input read State Output so far 0,1 ε $q_0$ ε ε $q_2$ $q_2$ 10 1 $q_1$ 10# 10# $q_0$ 10#1 10# 1,1 $q_2$ 10#11 10#1 $q_2$ 10#10# 10#11# $q_0$

#### Transducers

- Given a sequence of binary numbers, it outputs the same numbers rounded down to the nearest even
- We can think of it as modifying an input signal
- Finite-state transducers have signal-processing applications:
  - Natural language processing
  - Speech recognition
  - Speech synthesis
  - (reference in the book)
- They come in many varieties
  - deterministic / nondeterministic
  - output on transition / output in state
  - software / hardware

## Outline

- 9.1 DFA Minimization
- 9.2 Two-Way Finite Automata
- 9.3 Finite-State Transducers
- 9.4 Advanced Regular Expressions

# **Regular Expression Equivalence**

- Chapter 7 grading: decide whether a regular expression is a correct answer to a problem
- That is, decide whether two regular expressions (your solution and mine) define the same language
- We've seen a way to automate this:
  - convert to NFAs (as in Appendix A)
  - convert to DFAs (subset construction)
  - minimize the DFAs (quotient construction)
  - compare: the original regular expressions are equivalent if the resulting DFAs are identical
- But this is extremely expensive

## Cost of Equivalence Testing

- The problem of deciding regular expression equivalence is PSPACE-complete
  - Informally: PSPACE-complete problems are generally believed (but not proved) to require exponential time
  - More about this in Chapter 20
- The problem gets even worse when we extend regular expressions...

#### Regular Expressions With Squaring

- Add one more kind of compound expression:
  (r)<sup>2</sup>, with L((r)<sup>2</sup>) = L((r)(r))
- Obviously, this doesn't add power
- But it does allow you to express some regular languages much more compactly
- Consider {0<sup>n</sup> | n mod 64 = 0}, without squaring and with squaring:

 $(((((0000)^2)^2)^2)^2)^*$ 

## New Complexity

- The problem of deciding regular expression equivalence, when squaring is allowed, is EXPSPACE-complete
  - Informally: EXPSPACE-complete problems require exponential space and at least exponential time
  - More about this in Chapter 20
- Cost is measured as a function of the input size -- and we've compressed the input size using squaring
- The problem gets even worse when we extend regular expressions in other ways...

#### Regular Expressions With Complement

- Add one more kind of compound expression:
  (r)<sup>C</sup>, with L((r)<sup>C</sup>) defined to be the complement of L(r)
- Obviously, this doesn't add power; regular languages are closed for complement
- But it does allow you to express some regular languages much more compactly
- See Chapter 9, Exercise 3

## Still More Complexity

- The problem of deciding regular expression equivalence, when complement is allowed, requires NONELEMENTARY TIME
  - Informally: the time required to compare two regular expressions of length *n* grows faster than

for any fixed-height stack of exponentiations

- More about this in Chapter 20

## Star Height

- The star height of a regular expression is the nesting depth of Kleene stars
  - a+b has star height 0
  - $(a+b)^*$  has star height 1
  - $(a^*+b^*)^*$  has star height 2
  - etc.
- It is often possible, and desirable, to simplify expressions in a way that reduces star height
  - $\varnothing^*$  defines the same language as  $\epsilon$
  - $(a^*+b^*)^*$  defines the same language as  $(a+b)^*$

## **Star Height Questions**

- Is there some fixed star height (perhaps 1 or 2) that suffices for any regular language?
- Is there an algorithm that can take a regular expression and find the minimum possible star height for any equivalent expression?

## **Star Height Questions**

- For basic regular expressions, the answers are known:
  - Is there some fixed star height (perhaps 1 or 2) that suffices for any regular language? -- No, we need arbitrary star height to cover the regular languages
  - Is there an algorithm that can take a regular expression and find the minimum possible star height for any equivalent expression? -- Yes, there is an algorithm for minimizing star height
- When complement is allowed, these questions are still open

## **Generalized Star-Height Problem**

- In particular, when complement is allowed, it is not known whether there is a regular language that requires a star height greater than 1!
- This is one of the most prominent open problems surrounding regular expressions