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Chapter Nine: 
Advanced Topics  

in  
Regular Languages
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There are many more things to learn about finite automata than 
are covered in this book.  There are many variations with 

interesting applications, and there is a large body of theory.  
Especially interesting, but beyond the scope of this book, are the 
various algebras that arise around finite automata.  This chapter 

gives just a taste of some of these advanced topics.
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Outline

• 9.1 DFA Minimization 
• 9.2 Two-Way Finite Automata 
• 9.3 Finite-State Transducers 
• 9.4 Advanced Regular Expressions
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DFA Minimization

• Questions of DFA size: 
– Given a DFA, can we find one with fewer states 

that accepts the same language? 
– What is the smallest DFA for a given language? 
– Is the smallest DFA unique, or can there be more 

than one "smallest" DFA for the same language? 
• All these questions have neat answers…
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Eliminating Unnecessary States

• Unreachable states, like some of those 
introduced by the subset construction, can 
obviously be eliminated 

• Even some of the reachable states may be 
redundant…
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Example: Equivalent States

• In both q3 and q4, the machine rejects, no matter what the rest of 
the input string contains 

• They're equivalent and can be combined…

 

q0 q1 
 

a 

a 

q3 
 

a,b 

b 

q2 
 

q4 
 

a,b 

b 
b 

a 
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Still More Equivalent States

• In both q1 and q2, the machine accepts if and only if the rest of 
the string consists of 0 or more as 

• They're equivalent and can be combined…

 

q0 q1 
 

a 

a 

 
 

a,b 

b 

q2 
 

b 
b 

a 
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Minimized

• No more equivalencies 
• This is a minimum-state DFA for the language, 

{xay | x ∈ {b}* and y ∈ {a}*}

 

q0  
a 

a 

 
 

a,b 

b 
b 

Formal Language, chapter 9, slide 8



9

State Equivalence

• Informally: two states are equivalent when the 
machine's decision after any remaining input 
will be the same from either state 

• Formally: 
– Define a little language L(M,q) for each state q: 

L(M,q) = {x ∈ Σ* | δ*(q,x) ∈ F} 
– That's the language of strings that would be 

accepted if q were used as the start state 
– Now we can define state equivalence: q and r are 

equivalent if and only if L(M,q) = L(M,r)
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• We have: 
– L(M,q0) = {xay | x ∈ {b}* and y ∈ {a}*} 
– L(M,q1) = {x | x ∈ {a}*} 
– L(M,q2) = {x | x ∈ {a}*} 
– L(M,q3) = {} 
– L(M,q4) = {} 

• So q1 ≡ q2 and q3 ≡ q4

 

q0 q1 
 

a 

a 

q3 
 

a,b 

b 

q2 
 

q4 
 

a,b 

b 
b 

a 
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DFA Minimization Procedure

• Two steps: 
– 1.  Eliminated states that are not reachable from 

the start state 
– 2.  Combine all equivalent states, so that no two 

remaining states are equivalent to each other 
• Step 2 is the construction of a new DFA whose 

states are the equivalence classes of the 
original: the quotient construction
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Theorem 9.1

• (Stated here without proof) 
• Resulting DFA is unique up to isomorphism 

– That is, unique except perhaps for state names, which of course 
have no effect on L(M) 

• So our minimization procedure is safe and effective 
– Safe, in that it does not change L(M) 
– Effective, in that it finds the structurally unique smallest DFA for L(M) 

Every regular language has a unique minimum-state 
DFA, and no matter what DFA for the language you 
start with, the minimization procedure finds it.
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Automating Minimization

• Is there an algorithm that can efficiently detect 
equivalent states and so perform the 
minimization? 

• Yes: a DFA with state set Q and alphabet Σ 
can be minimized in O(|Σ| |Q| log |Q|) time 

• (reference in the book)
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Minimizing NFAs

• Results are not as clean for NFAs 
• We can still eliminate unreachable states 
• We can still combine equivalent states, using 

a similar definition of equivalence 
• But the result is not necessarily a unique 

minimum-state NFA for the language 
• (reference in the book)

Formal Language, chapter 9, slide 14



15

Outline

• 9.1 DFA Minimization 
• 9.2 Two-Way Finite Automata 
• 9.3 Finite-State Transducers 
• 9.4 Advanced Regular Expressions
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Two-Way Finite Automata

• DFAs and NFAs read their input once, left to 
right 

• We can try to make these models more 
powerful by allowing re-reading 

• Treat the input like a tape, and allow the 
automaton to move its read head left or right 
on each move 
– Two-way deterministic finite automata (2DFA) 
– Two-way nondeterministic finite automata (2NFA)
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2DFA Example

• Input string x1x2…xn-1xn 

• Special endmarker symbols frame the input 
• The head can't move past them

 x1 x2  xn-1 xn ... 

2DFA 
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2DFA Differences

• Transition function returns a pair of values: 
– The next state 
– The direction (L or R) to move the head 

• Computation ends, not at the end of the string, 
but when a special state is entered 
– One accept state: halt and accept when entered 
– One reject state: halt and reject when entered 

• Can these define more than the regular 
languages?
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Theorems 9.2.1 And 9.2.2

• (Stated here without proof) 
• So adding two-way reading to finite automata does not increase 

their definitional power 
• A little more tweaking will give us more power later: 

– adding the ability to write as well as read yields LBAs (linear 
bounded automata), which are much more powerful 

– Adding the ability to write unboundedly far past the end markers 
yields the Turing machines, still more powerful

There is a 2DFA for a language L if and only if L is regular. 

There is a 2NFA for a language L if and only if L is regular.
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Outline

• 9.1 DFA Minimization 
• 9.2 Two-Way Finite Automata 
• 9.3 Finite-State Transducers 
• 9.4 Advanced Regular Expressions
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Finite-State Transducers

• Our DFAs and NFAs have a single bit of 
output: accept/reject 

• For some applications we need more output 
than that 

• Finite-state machines with string output are 
called finite-state transducers
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Output On Each Transition

• A transition labeled a,x works like a DFA transition labeled a, but 
also outputs string x 

• Transforms input strings into output strings

 
 

q0 q1 
 

#,0# 

q2 
 

0,0 
0,  

1,0 

#,  

#,0# 1,  
0,1 

1,1 
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Action For Input 10#11#
 

 
q0 q1 

 

#,0# 

q2 
 

0,0 
0,  

1,0 

#,  

#,0# 1,  
0,1 

1,1 

Input re a d  State  Output so far  
 q0  

1  q2  
1 0  q1 1  
1 0 #  q0 1 0 #  
10#1  q2 1 0 #  
10#11  q2 10#1  
10#11#  q0 10#10#  
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Transducers

• Given a sequence of binary numbers, it outputs the same 
numbers rounded down to the nearest even 

• We can think of it as modifying an input signal 
• Finite-state transducers have signal-processing applications: 

– Natural language processing 
– Speech recognition 
– Speech synthesis 
– (reference in the book) 

• They come in many varieties 
– deterministic / nondeterministic 
– output on transition / output in state 
– software / hardware
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Outline

• 9.1 DFA Minimization 
• 9.2 Two-Way Finite Automata 
• 9.3 Finite-State Transducers 
• 9.4 Advanced Regular Expressions
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Regular Expression Equivalence

• Chapter 7 grading: decide whether a regular 
expression is a correct answer to a problem 

• That is, decide whether two regular expressions (your 
solution and mine) define the same language 

• We've seen a way to automate this: 
– convert to NFAs (as in Appendix A) 
– convert to DFAs (subset construction) 
– minimize the DFAs (quotient construction) 
– compare: the original regular expressions are equivalent if 

the resulting DFAs are identical 
• But this is extremely expensive
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Cost of Equivalence Testing

• The problem of deciding regular expression 
equivalence is PSPACE-complete 
– Informally: PSPACE-complete problems are 

generally believed (but not proved) to require 
exponential time 

– More about this in Chapter 20 
• The problem gets even worse when we 

extend regular expressions...
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Regular Expressions  
With Squaring

• Add one more kind of compound expression: 
– (r)2, with L((r)2) = L((r)(r)) 

• Obviously, this doesn't add power 
• But it does allow you to express some regular 

languages much more compactly 
• Consider {0n | n mod 64 = 0}, without squaring and 

with squaring:

(((((0000)2)2)2)2)*

(0000000000000000000000000000000000000000000000000000000000000000)*
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New Complexity

• The problem of deciding regular expression 
equivalence, when squaring is allowed, is 
EXPSPACE-complete 
– Informally: EXPSPACE-complete problems require 

exponential space and at least exponential time 
– More about this in Chapter 20 

• Cost is measured as a function of the input size -- and 
we've compressed the input size using squaring 

• The problem gets even worse when we extend regular 
expressions in other ways...
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Regular Expressions  
With Complement

• Add one more kind of compound expression: 
– (r)C, with L((r)C) defined to be the complement of L(r) 

• Obviously, this doesn't add power; regular languages 
are closed for complement 

• But it does allow you to express some regular 
languages much more compactly 

• See Chapter 9, Exercise 3
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Still More Complexity

• The problem of deciding regular expression 
equivalence, when complement is allowed, requires 
NONELEMENTARY TIME 
– Informally: the time required to compare two regular 

expressions of length n grows faster than  
 
 
 
 
for any fixed-height stack of exponentiations 

– More about this in Chapter 20

      

€ 

22!
2n
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Star Height

• The star height of a regular expression is the nesting 
depth of Kleene stars 
– a+b has star height 0 
– (a+b)* has star height 1 
– (a*+b*)* has star height 2 
– etc. 

• It is often possible, and desirable, to simplify 
expressions in a way that reduces star height 
– ∅* defines the same language as ε 
– (a*+b*)* defines the same language as (a+b)*
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Star Height Questions

• Is there some fixed star height (perhaps 1 or 
2) that suffices for any regular language? 

• Is there an algorithm that can take a regular 
expression and find the minimum possible star 
height for any equivalent expression?
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Star Height Questions

• For basic regular expressions, the answers are 
known: 
– Is there some fixed star height (perhaps 1 or 2) that suffices 

for any regular language? -- No, we need arbitrary star height 
to cover the regular languages 

– Is there an algorithm that can take a regular expression and 
find the minimum possible star height for any equivalent 
expression? -- Yes, there is an algorithm for minimizing star 
height 

• When complement is allowed, these questions are still 
open
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Generalized Star-Height Problem

• In particular, when complement is allowed, it is 
not known whether there is a regular language 
that requires a star height greater than 1! 

• This is one of the most prominent open 
problems surrounding regular expressions
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