
1

Chapter Nine: 
Advanced Topics  

in  
Regular Languages

Formal Language, chapter 9, slide 1

2

There are many more things to learn about finite automata than
are covered in this book. There are many variations with

interesting applications, and there is a large body of theory.
Especially interesting, but beyond the scope of this book, are the
various algebras that arise around finite automata. This chapter

gives just a taste of some of these advanced topics.

Formal Language, chapter 9, slide 2

3

Outline

• 9.1 DFA Minimization
• 9.2 Two-Way Finite Automata
• 9.3 Finite-State Transducers
• 9.4 Advanced Regular Expressions

Formal Language, chapter 9, slide 3

4

DFA Minimization

• Questions of DFA size:
– Given a DFA, can we find one with fewer states

that accepts the same language?
– What is the smallest DFA for a given language?
– Is the smallest DFA unique, or can there be more

than one "smallest" DFA for the same language?
• All these questions have neat answers…

Formal Language, chapter 9, slide 4

5

Eliminating Unnecessary States

• Unreachable states, like some of those
introduced by the subset construction, can
obviously be eliminated

• Even some of the reachable states may be
redundant…

Formal Language, chapter 9, slide 5

6

Example: Equivalent States

• In both q3 and q4, the machine rejects, no matter what the rest of
the input string contains

• They're equivalent and can be combined…

q0 q1

a

a

q3

a,b

b

q2

q4

a,b

b
b

a

Formal Language, chapter 9, slide 6

7

Still More Equivalent States

• In both q1 and q2, the machine accepts if and only if the rest of
the string consists of 0 or more as

• They're equivalent and can be combined…

q0 q1

a

a

a,b

b

q2

b
b

a

Formal Language, chapter 9, slide 7

8

Minimized

• No more equivalencies
• This is a minimum-state DFA for the language, 

{xay | x ∈ {b}* and y ∈ {a}*}

q0
a

a

a,b

b
b

Formal Language, chapter 9, slide 8

9

State Equivalence

• Informally: two states are equivalent when the
machine's decision after any remaining input
will be the same from either state

• Formally:
– Define a little language L(M,q) for each state q: 

L(M,q) = {x ∈ Σ* | δ*(q,x) ∈ F}
– That's the language of strings that would be

accepted if q were used as the start state
– Now we can define state equivalence: q and r are

equivalent if and only if L(M,q) = L(M,r)

Formal Language, chapter 9, slide 9

10

• We have:
– L(M,q0) = {xay | x ∈ {b}* and y ∈ {a}*}
– L(M,q1) = {x | x ∈ {a}*}
– L(M,q2) = {x | x ∈ {a}*}
– L(M,q3) = {}
– L(M,q4) = {}

• So q1 ≡ q2 and q3 ≡ q4

q0 q1

a

a

q3

a,b

b

q2

q4

a,b

b
b

a

Formal Language, chapter 9, slide 10

11

DFA Minimization Procedure

• Two steps:
– 1. Eliminated states that are not reachable from

the start state
– 2. Combine all equivalent states, so that no two

remaining states are equivalent to each other
• Step 2 is the construction of a new DFA whose

states are the equivalence classes of the
original: the quotient construction

Formal Language, chapter 9, slide 11

12

Theorem 9.1

• (Stated here without proof)
• Resulting DFA is unique up to isomorphism

– That is, unique except perhaps for state names, which of course
have no effect on L(M)

• So our minimization procedure is safe and effective
– Safe, in that it does not change L(M)
– Effective, in that it finds the structurally unique smallest DFA for L(M)

Every regular language has a unique minimum-state
DFA, and no matter what DFA for the language you
start with, the minimization procedure finds it.

Formal Language, chapter 9, slide 12

13

Automating Minimization

• Is there an algorithm that can efficiently detect
equivalent states and so perform the
minimization?

• Yes: a DFA with state set Q and alphabet Σ
can be minimized in O(|Σ| |Q| log |Q|) time

• (reference in the book)

Formal Language, chapter 9, slide 13

14

Minimizing NFAs

• Results are not as clean for NFAs
• We can still eliminate unreachable states
• We can still combine equivalent states, using

a similar definition of equivalence
• But the result is not necessarily a unique

minimum-state NFA for the language
• (reference in the book)

Formal Language, chapter 9, slide 14

15

Outline

• 9.1 DFA Minimization
• 9.2 Two-Way Finite Automata
• 9.3 Finite-State Transducers
• 9.4 Advanced Regular Expressions

Formal Language, chapter 9, slide 15

16

Two-Way Finite Automata

• DFAs and NFAs read their input once, left to
right

• We can try to make these models more
powerful by allowing re-reading

• Treat the input like a tape, and allow the
automaton to move its read head left or right
on each move
– Two-way deterministic finite automata (2DFA)
– Two-way nondeterministic finite automata (2NFA)

Formal Language, chapter 9, slide 16

17

2DFA Example

• Input string x1x2…xn-1xn

• Special endmarker symbols frame the input
• The head can't move past them

 x1 x2 xn-1 xn ...

2DFA

Formal Language, chapter 9, slide 17

18

2DFA Differences

• Transition function returns a pair of values:
– The next state
– The direction (L or R) to move the head

• Computation ends, not at the end of the string,
but when a special state is entered
– One accept state: halt and accept when entered
– One reject state: halt and reject when entered

• Can these define more than the regular
languages?

Formal Language, chapter 9, slide 18

19

Theorems 9.2.1 And 9.2.2

• (Stated here without proof)
• So adding two-way reading to finite automata does not increase

their definitional power
• A little more tweaking will give us more power later:

– adding the ability to write as well as read yields LBAs (linear
bounded automata), which are much more powerful

– Adding the ability to write unboundedly far past the end markers
yields the Turing machines, still more powerful

There is a 2DFA for a language L if and only if L is regular.

There is a 2NFA for a language L if and only if L is regular.

Formal Language, chapter 9, slide 19

20

Outline

• 9.1 DFA Minimization
• 9.2 Two-Way Finite Automata
• 9.3 Finite-State Transducers
• 9.4 Advanced Regular Expressions

Formal Language, chapter 9, slide 20

21

Finite-State Transducers

• Our DFAs and NFAs have a single bit of
output: accept/reject

• For some applications we need more output
than that

• Finite-state machines with string output are
called finite-state transducers

Formal Language, chapter 9, slide 21

22

Output On Each Transition

• A transition labeled a,x works like a DFA transition labeled a, but
also outputs string x

• Transforms input strings into output strings

q0 q1

#,0#

q2

0,0
0,

1,0

#,

#,0# 1,
0,1

1,1

Formal Language, chapter 9, slide 22

23

Action For Input 10#11#

q0 q1

#,0#

q2

0,0
0,

1,0

#,

#,0# 1,
0,1

1,1

Input re a d State Output so far
 q0

1 q2
1 0 q1 1
1 0 # q0 1 0 #
10#1 q2 1 0 #
10#11 q2 10#1
10#11# q0 10#10#

Formal Language, chapter 9, slide 23

24

Transducers

• Given a sequence of binary numbers, it outputs the same
numbers rounded down to the nearest even

• We can think of it as modifying an input signal
• Finite-state transducers have signal-processing applications:

– Natural language processing
– Speech recognition
– Speech synthesis
– (reference in the book)

• They come in many varieties
– deterministic / nondeterministic
– output on transition / output in state
– software / hardware

Formal Language, chapter 9, slide 24

25

Outline

• 9.1 DFA Minimization
• 9.2 Two-Way Finite Automata
• 9.3 Finite-State Transducers
• 9.4 Advanced Regular Expressions

Formal Language, chapter 9, slide 25

26

Regular Expression Equivalence

• Chapter 7 grading: decide whether a regular
expression is a correct answer to a problem

• That is, decide whether two regular expressions (your
solution and mine) define the same language

• We've seen a way to automate this:
– convert to NFAs (as in Appendix A)
– convert to DFAs (subset construction)
– minimize the DFAs (quotient construction)
– compare: the original regular expressions are equivalent if

the resulting DFAs are identical
• But this is extremely expensive

Formal Language, chapter 9, slide 26

27

Cost of Equivalence Testing

• The problem of deciding regular expression
equivalence is PSPACE-complete
– Informally: PSPACE-complete problems are

generally believed (but not proved) to require
exponential time

– More about this in Chapter 20
• The problem gets even worse when we

extend regular expressions...

Formal Language, chapter 9, slide 27

28

Regular Expressions  
With Squaring

• Add one more kind of compound expression:
– (r)2, with L((r)2) = L((r)(r))

• Obviously, this doesn't add power
• But it does allow you to express some regular

languages much more compactly
• Consider {0n | n mod 64 = 0}, without squaring and

with squaring:

(((((0000)2)2)2)2)*

(00)*

Formal Language, chapter 9, slide 28

29

New Complexity

• The problem of deciding regular expression
equivalence, when squaring is allowed, is
EXPSPACE-complete
– Informally: EXPSPACE-complete problems require

exponential space and at least exponential time
– More about this in Chapter 20

• Cost is measured as a function of the input size -- and
we've compressed the input size using squaring

• The problem gets even worse when we extend regular
expressions in other ways...

Formal Language, chapter 9, slide 29

30

Regular Expressions  
With Complement

• Add one more kind of compound expression:
– (r)C, with L((r)C) defined to be the complement of L(r)

• Obviously, this doesn't add power; regular languages
are closed for complement

• But it does allow you to express some regular
languages much more compactly

• See Chapter 9, Exercise 3

Formal Language, chapter 9, slide 30

31

Still More Complexity

• The problem of deciding regular expression
equivalence, when complement is allowed, requires
NONELEMENTARY TIME
– Informally: the time required to compare two regular

expressions of length n grows faster than  
 
 
 
 
for any fixed-height stack of exponentiations

– More about this in Chapter 20

€

22!
2n

Formal Language, chapter 9, slide 31

32

Star Height

• The star height of a regular expression is the nesting
depth of Kleene stars
– a+b has star height 0
– (a+b)* has star height 1
– (a*+b*)* has star height 2
– etc.

• It is often possible, and desirable, to simplify
expressions in a way that reduces star height
– ∅* defines the same language as ε
– (a*+b*)* defines the same language as (a+b)*

Formal Language, chapter 9, slide 32

33

Star Height Questions

• Is there some fixed star height (perhaps 1 or
2) that suffices for any regular language?

• Is there an algorithm that can take a regular
expression and find the minimum possible star
height for any equivalent expression?

Formal Language, chapter 9, slide 33

34

Star Height Questions

• For basic regular expressions, the answers are
known:
– Is there some fixed star height (perhaps 1 or 2) that suffices

for any regular language? -- No, we need arbitrary star height
to cover the regular languages

– Is there an algorithm that can take a regular expression and
find the minimum possible star height for any equivalent
expression? -- Yes, there is an algorithm for minimizing star
height

• When complement is allowed, these questions are still
open

Formal Language, chapter 9, slide 34

35

Generalized Star-Height Problem

• In particular, when complement is allowed, it is
not known whether there is a regular language
that requires a star height greater than 1!

• This is one of the most prominent open
problems surrounding regular expressions

Formal Language, chapter 9, slide 35

