Chapter Ten: Grammars

Grammar is another of those common words for which the study of formal Canguage introduces a precise technical definition. For us, a grammar is a certain 反ind of collection of rules for building strings. Like © $\mathcal{D F A}$ s, $\mathcal{N F A s}$, and regular expressions, grammars are mechanisms for defining languages rigorousfy.
\mathcal{A} simple restriction on the form of these grammars yields the special class of right-finear grammars. The
Canguages that can be defined by right-Cinear grammars are exactly the regular Canguages. There it is again!

Outline

- 10.1 A Grammar Example for English
- 10.2 The 4-Tuple
- 10.3 The Language Generated by a Grammar
- 10.4 Every Regular Language Has a Grammar
- 10.5 Right-Linear Grammars
- 10.6 Every Right-linear Grammar Generates a Regular Language

A Little English

- An article can be the word a or the:

$$
\begin{aligned}
& A \rightarrow a \\
& A \rightarrow \text { the }
\end{aligned}
$$

- A noun can be the word dog, cat or rat:

$$
\begin{aligned}
& N \rightarrow \operatorname{dog} \\
& N \rightarrow c a t \\
& N \rightarrow r a t
\end{aligned}
$$

A noun phrase is an article followed by a noun: $P \rightarrow A N$

A Little English

- An verb can be the word loves, hates or eats:

$$
\begin{aligned}
& V \rightarrow \text { loves } \\
& V \rightarrow \text { hates } \\
& V \rightarrow \text { eats }
\end{aligned}
$$

A sentence can be a noun phrase, followed by a verb, followed by another noun phrase:

$$
S \rightarrow P V P
$$

The Little English Grammar

- Taken all together, a grammar G_{1} for a small subset of unpunctuated English:

$S \rightarrow P V P$	$A \rightarrow a$
$P \rightarrow A N$	$A \rightarrow$ the
$V \rightarrow$ loves	$N \rightarrow$ dog
$V \rightarrow$ hates	$N \rightarrow$ cat
$V \rightarrow$ eats	$N \rightarrow$ rat

- Each production says how to modify strings by substitution
- $x \rightarrow y$ says, substring x may be replaced by y

$S \rightarrow P V P$	$A \rightarrow a$
$P \rightarrow A N$	$A \rightarrow$ the
$V \rightarrow$ loves	$N \rightarrow$ dog
$V \rightarrow$ hates	$N \rightarrow$ cat
$V \rightarrow$ eats	$N \rightarrow$ rat

- Start from S and follow the productions of G_{1}
- This can derive a variety of (unpunctuated) English sentences:
$S \Rightarrow P V P \Rightarrow$ ANVP \Rightarrow theNVP \Rightarrow thecat $V P \Rightarrow$ thecateats $P \Rightarrow$ thecateats $A N$
\Rightarrow thecateatsa $N \Rightarrow$ thecateatsarat
$S \Rightarrow P V P \Rightarrow A N V P \Rightarrow a N V P \Rightarrow \operatorname{adog} V P \Rightarrow$ adogloves $P \Rightarrow$ adogloves $A N$
\Rightarrow adoglovestheN \Rightarrow adoglovesthecat
$S \Rightarrow P V P \Rightarrow A N V P \Rightarrow$ theNVP \Rightarrow thecat $V P \Rightarrow$ thecathates $P \Rightarrow$ thecathatesAN
\Rightarrow thecathatestheN \Rightarrow thecathatesthedog

$S \rightarrow P V P$	$A \rightarrow a$
$P \rightarrow$ AN	$A \rightarrow$ the
$V \rightarrow$ loves	$N \rightarrow$ dog
$V \rightarrow$ hates	$N \rightarrow$ cat
$V \rightarrow$ eats	$N \rightarrow$ rat

- Often there is more than one place in a string where a production could be applied
- For example, PlovesP:
- Ploves $P \Rightarrow$ ANloves P
- Ploves $P \Rightarrow$ PlovesAN
- The derivations on the previous slide chose the leftmost substitution at every step, but that is not a requirement
- The language defined by a grammar is the set of lowercase strings that have at least one derivation from the start symbol S

$$
\begin{aligned}
& S \rightarrow P V P \\
& P \rightarrow A N \\
& V \rightarrow \text { loves } \mid \text { hates } \mid \text { eats } \\
& A \rightarrow \text { a } \mid \text { the } \\
& N \rightarrow \text { dog } \mid \text { cat } \mid \text { rat }
\end{aligned}
$$

- Often, a grammar contains more than one production with the same left-hand side
- Those productions can be written in a compressed form
- The grammar is not changed by this
- This example still has ten productions

Informal Definition

A grammar is a set of productions of the form $x \rightarrow y$. The strings x and y can contain both lowercase and uppercase letters; x cannot be empty, but y can be ε. One uppercase letter is designated as the start symbol (conventionally, it is the letter S).

- Productions define permissible string substitutions
- When a sequence of permissible substitutions starting from S ends in a string that is all lowercase, we say the grammar generates that string
- $L(G)$ is the set of all strings generated by grammar G
$S \rightarrow a S$
$S \rightarrow X$
$X \rightarrow b X$
$X \rightarrow$
ε
- That final production for X says that X may be replaced by the empty string, so that for example $a b b X \Rightarrow a b b$
- Written in the more compact way, this grammar is:

$$
\begin{aligned}
& S \rightarrow a S \mid X \\
& X \rightarrow b X \mid \\
& \varepsilon
\end{aligned}
$$

$S \rightarrow a S \mid X$ $X \rightarrow b X \mid \varepsilon$

$$
\begin{aligned}
& S \Rightarrow a S \Rightarrow a X \Rightarrow a \\
& S \Rightarrow X \Rightarrow b X \Rightarrow b \\
& S \Rightarrow a S \Rightarrow a X \Rightarrow a b X \Rightarrow a b b X \Rightarrow a b b \\
& S \Rightarrow a S \Rightarrow a a S \Rightarrow a a a S \Rightarrow a a a X \Rightarrow \\
& a a a b X \Rightarrow \text { aaabb } \Rightarrow a a a b b
\end{aligned}
$$

$$
\begin{aligned}
& S \rightarrow a S \mid X \\
& X \rightarrow b X \mid \\
& \varepsilon
\end{aligned}
$$

- For this grammar, all derivations of lowercase strings follow this simple pattern:
- First use $S \rightarrow$ aS zero or more times
- Then use $S \rightarrow X$ once
- Then use $X \rightarrow b X$ zero or more times
- Then use $X \rightarrow \varepsilon$ once
- So the generated string always consists of zero or more as followed by zero or more bs
- $L(G)=L\left(a^{*} b^{*}\right)$

Untapped Power

- All our examples have used productions with a single uppercase letter on the left-hand side
- Grammars can have any non-empty string on the left-hand side
- The mechanism of substitution is the same
- Sb $\rightarrow b S$ says that $b S$ can be substituted for $S b$
- Such productions can be very powerful, but we won't need that power yet
- We'll concentrate on grammars with one uppercase letter on the left-hand side of every production

Outline

- 10.1 A Grammar Example for English
- 10.2 The 4-Tuple
- 10.3 The Language Generated by a Grammar
- 10.4 Every Regular Language Has a Grammar
- 10.5 Right-Linear Grammars
- 10.6 Every Right-linear Grammar Generates a Regular Language

Formalizing Grammars

- Our informal definition relied on the difference between lowercase and uppercase
- The formal definition will use two separate alphabets:
- The terminal symbols (typically lowercase)
- The nonterminal symbols (typically uppercase)
- So a formal grammar has four parts...

4-Tuple Definition

- A grammar G is a 4-tuple $G=(V, \Sigma, S, P)$, where:
- V is an alphabet, the nonterminal alphabet
- Σ is another alphabet, the terminal alphabet, disjoint from V
- $S \in V$ is the start symbol
- P is a finite set of productions, each of the form $x \rightarrow y$, where x and y are strings over $\Sigma \cup V$ and $x \neq \varepsilon$

Example

$$
\begin{aligned}
& S \rightarrow a S \mid X \\
& X \rightarrow b X \mid \\
& \varepsilon
\end{aligned}
$$

- Formally, this is $G=(V, \Sigma, S, P)$, where:
- $V=\{S, X\}$
$-\Sigma=\{a, b\}$
- $P=\{S \rightarrow a S, S \rightarrow X, X \rightarrow b X, X \rightarrow \varepsilon\}$
- The order of the 4-tuple is what counts:
$-G=(\{S, X\},\{a, b\}, S,\{S \rightarrow a S, S \rightarrow X, X \rightarrow b X, X \rightarrow \varepsilon\})$

Outline

- 10.1 A Grammar Example for English
- 10.2 The 4-Tuple
- 10.3 The Language Generated by a Grammar
- 10.4 Every Regular Language Has a Grammar
- 10.5 Right-Linear Grammars
- 10.6 Every Right-linear Grammar Generates a Regular Language

The Program

- For DFAs, we derived a zero-or-more-step δ^{*} function from the one-step δ
- For NFAs, we derived a one-step relation on IDs, then extended it to a zero-or-more-step relation
- We'll do the same kind of thing for grammars...

$W \Rightarrow$ Z

- Defined for a grammar $G=(V, \Sigma, S, P)$
- \Rightarrow is a relation on strings
- $w \Rightarrow z$ (" w derives $z ")$ if and only if there exist strings u, x, y, and v over $\Sigma \cup V$, with
$-w=u x v$
$-z=u y v$
$-(x \rightarrow y) \in P$
- That is, w can be transformed into z using one of the substitutions permitted by G

Derivations And $w \Rightarrow^{*} z$

- A sequence of \Rightarrow-related strings $x_{0} \Rightarrow x_{1} \Rightarrow \ldots \Rightarrow x_{n}$, is an n-step derivation
- $w \Rightarrow^{*} z$ if and only if there is a derivation of 0 or more steps that starts with w and ends with z
- That is, w can be transformed into z using a sequence of zero or more of the substitutions permitted by G

L(G)

- The language generated by a grammar G is $L(G)=\left\{x \in \Sigma^{*} \mid S \Rightarrow^{*} x\right\}$
- That is, the set of fully terminal strings derivable from the start symbol
- Notice the restriction $x \in \Sigma^{*}$:
- The intermediate strings in a derivation can use both Σ and V
- But only the fully terminal strings are in $L(G)$

Outline

- 10.1 A Grammar Example for English
- 10.2 The 4-Tuple
- 10.3 The Language Generated by a Grammar
- 10.4 Every Regular Language Has a Grammar
- 10.5 Right-Linear Grammars
- 10.6 Every Right-linear Grammar Generates a Regular Language

NFA to Grammar

- To show that there is a grammar for every regular language, we will show how to convert any NFA into an equivalent grammar
- That is, given an NFA M, construct a grammar G with $L(M)=L(G)$
- First, an example...

Example:

- The grammar we will construct generates $L(M)$
- In fact, its derivations will mimic what M does
- For each state, our grammar will have a nonterminal symbol (S, R and T)
- The start state will be the grammar's start symbol
- The grammar will have one production for each transition of the NFA, and one for each accepting state

Example:

- For each possible transition $Y \in \delta(X, z)$ in the NFA, our grammar has a production $X \rightarrow z Y$
- That gives us these four to start with:

Transition of M	Production in G
$\delta(S, a)=\{S\}$	$S \rightarrow a S$
$\delta(S, b)=\{R\}$	$S \rightarrow b R$
$\delta(R, c)=\{R\}$	$R \rightarrow c R$
$\delta(R, \varepsilon)=\{T\}$	$R \rightarrow T$

Example:

- In addition, for each accepting state in the NFA, our grammar has an ε-production
- That adds one more:

Accepting state of M	Production in G
T	$T \rightarrow \varepsilon$

Example:

- The complete grammar has one production for each transition, and one for each accepting state:

$$
\begin{aligned}
& S \rightarrow a S \\
& S \rightarrow b R \\
& R \rightarrow c R \\
& R \rightarrow T \\
& T \rightarrow \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& S \rightarrow a S \\
& S \rightarrow b R \\
& R \rightarrow c R \\
& R \rightarrow T \\
& T \rightarrow \varepsilon
\end{aligned}
$$

- Compare the behavior of M as it accepts abc with the behavior of G as it generates abc:
$(S, a b c) \mapsto(S, b c) \mapsto(R, c) \mapsto(R, \varepsilon) \mapsto(T, \varepsilon)$ $S \Rightarrow a S \Rightarrow a b R \Rightarrow a b c R \Rightarrow a b c T \Rightarrow a b c$
- Every time the NFA reads a symbol, the grammar generates that symbol
- In general, M can be in state Y after reading string x if and only if G can derive the string $x Y$

Theorem 10.4

Every regular language is generated by some grammar.

- Proof is by construction; let $M=(Q, \Sigma, \delta, S, F)$ be any NFA
- Construct $G=(Q, \Sigma, S, P)$
- Q, Σ, and S are the same as for M
- P is constructed from δ and F :
- Wherever M has $Y \in \delta(X, z), P$ contains $X \rightarrow z Y$
- And for each $X \in F, P$ contains $X \rightarrow \varepsilon$
- Now G has $X \rightarrow z Y$ whenever $\quad(X, z) \mapsto(Y, \varepsilon)$
- By induction we can extend this to any string $z \in \Sigma^{*}$:

$$
G \text { has } X \rightarrow^{*} z Y \text { whenever } \quad(X, z) \mapsto{ }^{*}(Y, \varepsilon)
$$

- And by construction, G has $Y \rightarrow \varepsilon$ whenever M has $Y \in F$
- So for all strings $z \in \Sigma^{*}, \delta^{*}(S, z)$ contains at least one element of F if and only if $S \Rightarrow^{*} z$
- $\quad L(M)=L(G)$

Outline

- 10.1 A Grammar Example for English
- 10.2 The 4-Tuple
- 10.3 The Language Generated by a Grammar
- 10.4 Every Regular Language Has a Grammar
- 10.5 Right-Linear Grammars
- 10.6 Every Right-linear Grammar Generates a Regular Language

Single-Step Grammars

- A grammar $G=(V, \Sigma, S, P)$ is single step if and only if every production in P is in one of these three forms, where $X \in V$, $Y \in V$, and $z \in \Sigma$:
- $X \rightarrow z Y$
$-X \rightarrow z$
- $X \rightarrow \varepsilon$
- Given any single-step grammar, we could run the previous construction backwards, building an equivalent NFA...

Reverse Example

- This grammar generates $L\left(a b^{*} a\right)$:
- All its productions are of the kinds built in our construction

$$
\begin{aligned}
& S \rightarrow a R \\
& R \rightarrow b R \\
& R \rightarrow a T \\
& T \rightarrow \varepsilon
\end{aligned}
$$

- Running the construction backwards, we get three states S, R, and T
- The first three productions give us the three arrows, and the fourth makes T accepting:

Production Massage $\underset{\substack{S \rightarrow a b R \\ R \rightarrow a}}{\substack{\text { a }}}$

- Even if all the productions are not of the required form, it is sometimes possible to massage them until they are
- $S \rightarrow a b R$ does not have the right form:
- Equivalent productions $S \rightarrow a X$ and $X \rightarrow b R$ do
- $R \rightarrow$ a does not have the right form:
- Equivalent productions $R \rightarrow a Y$ and $Y \rightarrow \varepsilon$ do
- After those changes we can run the construction backwards...

Massaged Reverse Example

$$
\begin{aligned}
& S \rightarrow a b R \\
& R \rightarrow a
\end{aligned}
$$

$$
\begin{aligned}
& S \rightarrow a X \\
& X \rightarrow b R \\
& R \rightarrow a Y \\
& Y \rightarrow \varepsilon
\end{aligned}
$$

Right-Linear Grammars

- A grammar $G=(V, \Sigma, S, P)$ is right linear if and only if every production in P is in one of these two forms, where $X \in V$, $Y \in V$, and $z \in \Sigma^{*}$:
$-X \rightarrow z Y$, or
- $X \rightarrow z$
- So every production has:
- A single nonterminal on the left
- At most one nonterminal on the right, and only as the rightmost symbol
- Note that this includes all single-step grammars
- This special form makes it easy to massage the productions and then transform them into NFAs

Lemma 10.5

Every right-linear grammar G is equivalent to some single-step grammar G^{\prime}.

- Proof is by construction
- Let $G=(V, \Sigma, S, P)$ be any right-linear grammar
- Each production is $X \rightarrow z_{1} \ldots z_{n} \omega$, where $\omega \in V$ or $\omega=\varepsilon$
- For each such production, let P contains these $n+1$ productions, where each K_{i} is a new nonterminal symbol:
- Now let $G=\left(V^{\prime}, \Sigma, S, P^{\prime}\right)$, where V is the set of nonterminals used in P^{\prime}
- Any step of a derivation G is equivalent

$$
\begin{aligned}
& X \rightarrow z_{1} K_{1} \\
& K_{1} \rightarrow z_{2} K_{2} \\
& \ldots \\
& K_{n-1} \rightarrow z_{n} K_{n} \\
& K_{n} \rightarrow \omega
\end{aligned}
$$ to the corresponding $n+1$ steps in G^{\prime}

- The reverse is true for derivations of terminal strings in G^{\prime}
- So $L(G)=L\left(G^{\prime}\right)$

Outline

- 10.1 A Grammar Example for English
- 10.2 The 4-Tuple
- 10.3 The Language Generated by a Grammar
- 10.4 Every Regular Language Has a Grammar
- 10.5 Right-Linear Grammars
- 10.6 Every Right-linear Grammar Generates a Regular Language

Theorem 10.6

For every right-linear grammar $G, L(G)$ is regular.

- Proof is by construction
- Use Lemma 10.5 to get single-step form, then use the reverse of the construction from Theorem 10.4

Left-Linear Grammars

- A grammar $G=(V, \Sigma, S, P)$ is left linear if and only if every production in P is in one of these two forms, where $X \in V, Y \in V$, and $z \in \Sigma^{*}$:
$-X \rightarrow Y Z$, or
$-X \rightarrow z$
- This parallels the definition of right-linear
- With a little more work, one can show that the language generated is also always regular

Regular Grammars, Regular Languages

- Grammars that are either left-linear or right-linear are called regular grammars
- A simple inspection tells you whether G is a regular grammar; if it is, $L(G)$ is a regular language
- Note that if G is not a regular grammar, that tells you nothing: $L(G)$ might still be regular language
- This example is not right-linear and not left-linear, but $L(G)$ is the regular language $L\left((a a a)^{*}\right)$:

$$
S \rightarrow \text { aSaa } \mid \varepsilon
$$

The Next Big Question

- We know that all regular grammars generate regular languages
- We've seen a non-regular grammar that still generates a regular language
- So are there any grammars that generate languages that are not regular?
- For that matter, do any non-regular languages exist?
- Answers to these in the next chapter

