
1

Chapter Ten: 
Grammars

Formal Language, chapter 10, slide 1

2

Grammar is another of those common words for which
the study of formal language introduces a precise

technical definition. For us, a grammar is a certain kind
of collection of rules for building strings. Like DFAs,

NFAs, and regular expressions, grammars are
mechanisms for defining languages rigorously.

A simple restriction on the form of these grammars yields
the special class of right-linear grammars. The

languages that can be defined by right-linear grammars
are exactly the regular languages. There it is again!

Formal Language, chapter 10, slide 2

3

Outline

• 10.1 A Grammar Example for English
• 10.2 The 4-Tuple
• 10.3 The Language Generated by a Grammar
• 10.4 Every Regular Language Has a

Grammar
• 10.5 Right-Linear Grammars
• 10.6 Every Right-linear Grammar Generates a

Regular Language

Formal Language, chapter 10, slide 3

4

A Little English

• An article can be the word a or the:

 A → a  
 A → the

• A noun can be the word dog, cat or rat:
 N → dog  

 N → cat 
 N → rat

A noun phrase is an article followed by a noun:
 P → AN

Formal Language, chapter 10, slide 4

5

A Little English

• An verb can be the word loves, hates or eats:
 V → loves 

 V → hates  
 V → eats

A sentence can be a noun phrase, followed by a verb, followed
by another noun phrase:

 S → PVP

Formal Language, chapter 10, slide 5

6

The Little English Grammar

• Taken all together, a grammar G1 for a small subset of
unpunctuated English:

• Each production says how to modify strings by
substitution

• x → y says, substring x may be replaced by y

S → PVP A → a  
P → AN A → the  
V → loves N → dog  
V → hates N → cat  
V → eats N → rat

Formal Language, chapter 10, slide 6

7

• Start from S and follow the productions of G1
• This can derive a variety of (unpunctuated) English sentences:

S ⇒ PVP ⇒ ANVP ⇒ theNVP ⇒ thecatVP ⇒ thecateatsP ⇒ thecateatsAN
 ⇒ thecateatsaN ⇒ thecateatsarat

S ⇒ PVP ⇒ ANVP ⇒ aNVP ⇒ adogVP ⇒ adoglovesP ⇒ adoglovesAN
 ⇒ adoglovestheN ⇒ adoglovesthecat

S ⇒ PVP ⇒ ANVP ⇒ theNVP ⇒ thecatVP ⇒ thecathatesP ⇒ thecathatesAN
 ⇒ thecathatestheN ⇒ thecathatesthedog

S → PVP A → a  
P → AN A → the  
V → loves N → dog  
V → hates N → cat  
V → eats N → rat

Formal Language, chapter 10, slide 7

8

• Often there is more than one place in a string where a production could
be applied

• For example, PlovesP:
– PlovesP ⇒ ANlovesP
– PlovesP ⇒ PlovesAN

• The derivations on the previous slide chose the leftmost substitution at
every step, but that is not a requirement

• The language defined by a grammar is the set of lowercase strings that
have at least one derivation from the start symbol S

S → PVP A → a  
P → AN A → the  
V → loves N → dog  
V → hates N → cat  
V → eats N → rat

Formal Language, chapter 10, slide 8

9

• Often, a grammar contains more than one
production with the same left-hand side

• Those productions can be written in a
compressed form

• The grammar is not changed by this
• This example still has ten productions

S → PVP  
P → AN
V → loves | hates | eats 
A → a | the
N → dog | cat | rat

Formal Language, chapter 10, slide 9

10

Informal Definition

• Productions define permissible string substitutions
• When a sequence of permissible substitutions starting

from S ends in a string that is all lowercase, we say
the grammar generates that string

• L(G) is the set of all strings generated by grammar G

A grammar is a set of productions of the form x → y.
The strings x and y can contain both lowercase and
uppercase letters; x cannot be empty, but y can be ε.
One uppercase letter is designated as the start
symbol (conventionally, it is the letter S).

Formal Language, chapter 10, slide 10

11

• That final production for X says that X may be replaced by the
empty string, so that for example abbX ⇒ abb

• Written in the more compact way, this grammar is:

S → aS | X
X → bX |  
ε

S → aS
S → X  
X → bX
X →  
ε

Formal Language, chapter 10, slide 11

12

S ⇒ aS ⇒ aX ⇒ a

S ⇒ X ⇒ bX ⇒ b

S ⇒ aS ⇒ aX ⇒ abX ⇒ abbX ⇒ abb

S ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaaX ⇒
 aaabX ⇒ aaabbX ⇒ aaabb

S → aS | X
X → bX | ε

Formal Language, chapter 10, slide 12

13

• For this grammar, all derivations of lowercase
strings follow this simple pattern:
– First use S → aS zero or more times
– Then use S → X once
– Then use X → bX zero or more times
– Then use X → ε once

• So the generated string always consists of
zero or more as followed by zero or more bs

• L(G) = L(a*b*)

S → aS | X
X → bX |  
ε

Formal Language, chapter 10, slide 13

14

Untapped Power

• All our examples have used productions with a single uppercase
letter on the left-hand side

• Grammars can have any non-empty string on the left-hand side
• The mechanism of substitution is the same

– Sb → bS says that bS can be substituted for Sb
• Such productions can be very powerful, but we won't need that

power yet
• We'll concentrate on grammars with one uppercase letter on the

left-hand side of every production

Formal Language, chapter 10, slide 14

15

Outline

• 10.1 A Grammar Example for English
• 10.2 The 4-Tuple
• 10.3 The Language Generated by a Grammar
• 10.4 Every Regular Language Has a

Grammar
• 10.5 Right-Linear Grammars
• 10.6 Every Right-linear Grammar Generates a

Regular Language

Formal Language, chapter 10, slide 15

16

Formalizing Grammars

• Our informal definition relied on the difference
between lowercase and uppercase

• The formal definition will use two separate alphabets:
– The terminal symbols (typically lowercase)
– The nonterminal symbols (typically uppercase)

• So a formal grammar has four parts…

Formal Language, chapter 10, slide 16

17

4-Tuple Definition

• A grammar G is a 4-tuple G = (V, Σ, S, P), where:
– V is an alphabet, the nonterminal alphabet
– Σ is another alphabet, the terminal alphabet, disjoint from V
– S ∈ V is the start symbol
– P is a finite set of productions, each of the form  

x → y, where x and y are strings over Σ ∪ V and  
x ≠ ε

Formal Language, chapter 10, slide 17

18

Example

• Formally, this is G = (V, Σ, S, P), where:
– V = {S, X}
– Σ = {a, b}
– P = {S → aS, S → X, X → bX, X → ε}

• The order of the 4-tuple is what counts:
– G = ({S, X}, {a, b}, S, {S → aS, S → X, X → bX, X → ε})

S → aS | X
X → bX |  
ε

Formal Language, chapter 10, slide 18

19

Outline

• 10.1 A Grammar Example for English
• 10.2 The 4-Tuple
• 10.3 The Language Generated by a Grammar
• 10.4 Every Regular Language Has a

Grammar
• 10.5 Right-Linear Grammars
• 10.6 Every Right-linear Grammar Generates a

Regular Language

Formal Language, chapter 10, slide 19

20

The Program

• For DFAs, we derived a zero-or-more-step δ*
function from the one-step δ

• For NFAs, we derived a one-step relation on
IDs, then extended it to a zero-or-more-step
relation

• We'll do the same kind of thing for
grammars…

Formal Language, chapter 10, slide 20

21

w ⇒ z

• Defined for a grammar G = (V, Σ, S, P)
• ⇒ is a relation on strings
• w ⇒ z ("w derives z") if and only if there exist strings

u, x, y, and v over Σ ∪ V, with
– w = uxv
– z = uyv
– (x → y) ∈ P

• That is , w can be transformed into z using one of the
substitutions permitted by G

Formal Language, chapter 10, slide 21

22

Derivations And w ⇒* z

• A sequence of ⇒-related strings 
x0 ⇒ x1 ⇒ ... ⇒ xn, is an n-step derivation

• w ⇒* z if and only if there is a derivation of  
0 or more steps that starts with w and ends with z

• That is, w can be transformed into z using a sequence
of zero or more of the substitutions permitted by G

Formal Language, chapter 10, slide 22

23

L(G)

• The language generated by a grammar G is  
L(G) = {x ∈ Σ* | S ⇒* x}

• That is, the set of fully terminal strings derivable from
the start symbol

• Notice the restriction x ∈ Σ*:
– The intermediate strings in a derivation can use both  
Σ and V

– But only the fully terminal strings are in L(G)

Formal Language, chapter 10, slide 23

24

Outline

• 10.1 A Grammar Example for English
• 10.2 The 4-Tuple
• 10.3 The Language Generated by a Grammar
• 10.4 Every Regular Language Has a

Grammar
• 10.5 Right-Linear Grammars
• 10.6 Every Right-linear Grammar Generates a

Regular Language

Formal Language, chapter 10, slide 24

25

NFA to Grammar

• To show that there is a grammar for every
regular language, we will show how to convert
any NFA into an equivalent grammar

• That is, given an NFA M, construct a grammar
G with L(M) = L(G)

• First, an example…

Formal Language, chapter 10, slide 25

26

Example:

• The grammar we will construct generates L(M)
• In fact, its derivations will mimic what M does
• For each state, our grammar will have a nonterminal symbol (S,

R and T)
• The start state will be the grammar's start symbol
• The grammar will have one production for each transition of the

NFA, and one for each accepting state

S R

b

c

T

a

Formal Language, chapter 10, slide 26

27

Example:

• For each possible transition Y ∈ δ(X,z) in the
NFA, our grammar has a production X → zY

• That gives us these four to start with:
Transition of M Production in G
(S,a) = {S } S → aS
(S,b) = {R } S → bR
(R,c) = {R} R → cR
(R,) = {T } R → T

S R

b

c

T

a

Formal Language, chapter 10, slide 27

28

Example:

• In addition, for each accepting state in the
NFA, our grammar has an ε-production

• That adds one more:

Accepting state of M Production in G
T T →

S R

b

c

T

a

Formal Language, chapter 10, slide 28

29

Example:

• The complete grammar has one production for
each transition, and one for each accepting
state:

S R

b

c

T

a

S → aS 
S → bR  
R → cR  
R → T 
T → ε

Formal Language, chapter 10, slide 29

30

• Compare the behavior of M as it accepts abc with the
behavior of G as it generates abc:

• Every time the NFA reads a symbol, the grammar
generates that symbol

• In general, M can be in state Y after reading string x if
and only if G can derive the string xY

(S,abc)

€

! (S,bc)

€

! (R ,c)

€

! (R,)

€

! (T,)
S ⇒ a S ⇒ abR ⇒ abcR ⇒ abcT ⇒ abc

S R

b

c

T

a
S → aS 
S → bR  
R → cR  
R → T 
T → ε

Formal Language, chapter 10, slide 30

31

Theorem 10.4

• Proof is by construction; let M = (Q, Σ, δ, S, F) be any NFA
• Construct G = (Q, Σ, S, P)

– Q, Σ, and S are the same as for M
– P is constructed from δ and F:

• Wherever M has Y ∈ δ(X,z), P contains X → zY
• And for each X ∈ F, P contains X → ε

• Now G has X → zY whenever
• By induction we can extend this to any string z ∈ Σ*: 

 G has X →* zY whenever
• And by construction, G has Y → ε whenever M has Y ∈ F
• So for all strings z ∈ Σ*, δ*(S,z) contains at least one element of F if and

only if S ⇒* z
• L(M) = L(G)

Every regular language is generated by some grammar.

€

(X ,z)! (Y,ε)

€

(X ,z)!* (Y,ε)

Formal Language, chapter 10, slide 31

32

Outline

• 10.1 A Grammar Example for English
• 10.2 The 4-Tuple
• 10.3 The Language Generated by a Grammar
• 10.4 Every Regular Language Has a

Grammar
• 10.5 Right-Linear Grammars
• 10.6 Every Right-linear Grammar Generates a

Regular Language

Formal Language, chapter 10, slide 32

33

Single-Step Grammars

• A grammar G = (V, Σ, S, P) is single step if and only if every
production in P is in one of these three forms, where X ∈ V,  
Y ∈ V, and z ∈ Σ:
– X → zY
– X → z
– X → ε

• Given any single-step grammar, we could run the previous
construction backwards, building an equivalent NFA…

Formal Language, chapter 10, slide 33

34

Reverse Example

• This grammar generates L(ab*a):
• All its productions are of the kinds 

built in our construction
• Running the construction backwards, we get three

states S, R, and T
• The first three productions give us the three arrows,

and the fourth makes T accepting:

S → aR  
R → bR  
R → aT 
T → ε

S R

a

b

T

a

Formal Language, chapter 10, slide 34

35

Production Massage

• Even if all the productions are not of the
required form, it is sometimes possible to
massage them until they are

• S → abR does not have the right form:
– Equivalent productions S → aX and X → bR do

• R → a does not have the right form:
– Equivalent productions R → aY and Y → ε do

• After those changes we can run the
construction backwards…

S → abR  
R → a

Formal Language, chapter 10, slide 35

36

Massaged Reverse Example
S → abR  
R → a

S → aX 
X → bR  
R → aY 
Y → ε

S R

a Y

a X

b

Formal Language, chapter 10, slide 36

37

Right-Linear Grammars

• A grammar G = (V, Σ, S, P) is right linear if and only if every
production in P is in one of these two forms, where X ∈ V,  
Y ∈ V, and z ∈ Σ*:
– X → zY, or
– X → z

• So every production has:
– A single nonterminal on the left
– At most one nonterminal on the right, and only as the rightmost

symbol
• Note that this includes all single-step grammars
• This special form makes it easy to massage the productions and

then transform them into NFAs

Formal Language, chapter 10, slide 37

38

Lemma 10.5

• Proof is by construction
• Let G = (V, Σ, S, P) be any right-linear grammar
• Each production is X → z1...znω, where ω ∈ V or ω = ε
• For each such production, let P contains  

these n+1 productions, where each Ki  
is a new nonterminal symbol:

• Now let G = (V', Σ, S, P'), where V' is  
the set of nonterminals used in P'

• Any step of a derivation G is equivalent 
to the corresponding n+1 steps in G'

• The reverse is true for derivations of terminal strings in G'
• So L(G) = L(G')

Every right-linear grammar G is equivalent to
some single-step grammar G'.

X → z1K1  
K1 → z2K2  
… 
Kn-1 → znKn  
Kn → ω

Formal Language, chapter 10, slide 38

39

Outline

• 10.1 A Grammar Example for English
• 10.2 The 4-Tuple
• 10.3 The Language Generated by a Grammar
• 10.4 Every Regular Language Has a

Grammar
• 10.5 Right-Linear Grammars
• 10.6 Every Right-linear Grammar Generates a

Regular Language

Formal Language, chapter 10, slide 39

40

Theorem 10.6

• Proof is by construction
• Use Lemma 10.5 to get single-step form, then use the reverse of

the construction from Theorem 10.4

For every right-linear grammar G, L(G) is regular.

Formal Language, chapter 10, slide 40

41

Left-Linear Grammars

• A grammar G = (V, Σ, S, P) is left linear if and only if
every production in P is in one of these two forms,
where X ∈ V, Y ∈ V, and z ∈ Σ*:
– X → Yz, or
– X → z

• This parallels the definition of right-linear
• With a little more work, one can show that the

language generated is also always regular

Formal Language, chapter 10, slide 41

42

Regular Grammars,  
Regular Languages

• Grammars that are either left-linear or right-linear are
called regular grammars

• A simple inspection tells you whether G is a regular
grammar; if it is, L(G) is a regular language

• Note that if G is not a regular grammar, that tells you
nothing: L(G) might still be regular language

• This example is not right-linear and not left-linear, but
L(G) is the regular language L((aaa)*):

S → aSaa | ε

Formal Language, chapter 10, slide 42

43

The Next Big Question

• We know that all regular grammars generate
regular languages

• We've seen a non-regular grammar that still
generates a regular language

• So are there any grammars that generate
languages that are not regular?

• For that matter, do any non-regular languages
exist?

• Answers to these in the next chapter

Formal Language, chapter 10, slide 43

