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Chapter Ten: 
Grammars
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Grammar is another of those common words for which 
the study of formal language introduces a precise 

technical definition.  For us, a grammar is a certain kind 
of collection of rules for building strings.  Like DFAs, 

NFAs, and regular expressions, grammars are 
mechanisms for defining languages rigorously. 

A simple restriction on the form of these grammars yields 
the special class of right-linear grammars.  The 

languages that can be defined by right-linear grammars 
are exactly the regular languages.  There it is again!
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Outline

• 10.1 A Grammar Example for English 
• 10.2 The 4-Tuple 
• 10.3 The Language Generated by a Grammar 
• 10.4 Every Regular Language Has a 

Grammar 
• 10.5 Right-Linear Grammars 
• 10.6 Every Right-linear Grammar Generates a 

Regular Language
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A Little English

• An article can be the word a or the: 

 A → a  
 A → the 

• A noun can be the word dog, cat or rat: 
 N → dog  

 N → cat 
 N → rat 

A noun phrase is an article followed by a noun: 
 P → AN
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A Little English

• An verb can be the word loves, hates or eats: 
 V → loves 

 V → hates  
 V → eats 

A sentence can be a noun phrase, followed by a verb, followed 
by another noun phrase: 

 S → PVP

Formal Language, chapter 10, slide 5



6

The Little English Grammar

• Taken all together, a grammar G1 for a small subset of 
unpunctuated English: 

• Each production says how to modify strings by 
substitution 

• x → y says, substring x may be replaced by y

S → PVP   A → a  
P → AN   A → the  
V → loves  N → dog  
V → hates  N → cat  
V → eats  N → rat
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• Start from S and follow the productions of G1 
• This can derive a variety of (unpunctuated) English sentences:

S ⇒ PVP ⇒ ANVP ⇒ theNVP ⇒ thecatVP ⇒ thecateatsP ⇒ thecateatsAN 
 ⇒  thecateatsaN ⇒  thecateatsarat 

S ⇒ PVP ⇒ ANVP ⇒ aNVP ⇒ adogVP ⇒ adoglovesP ⇒ adoglovesAN 
 ⇒  adoglovestheN ⇒  adoglovesthecat 

S ⇒ PVP ⇒ ANVP ⇒ theNVP ⇒ thecatVP ⇒ thecathatesP ⇒ thecathatesAN 
 ⇒  thecathatestheN ⇒  thecathatesthedog 

S → PVP   A → a  
P → AN   A → the  
V → loves  N → dog  
V → hates  N → cat  
V → eats  N → rat

Formal Language, chapter 10, slide 7



8

• Often there is more than one place in a string where a production could 
be applied 

• For example, PlovesP: 
– PlovesP ⇒ ANlovesP 
– PlovesP ⇒ PlovesAN 

• The derivations on the previous slide chose the leftmost substitution at 
every step, but that is not a requirement 

• The language defined by a grammar is the set of lowercase strings that 
have at least one derivation from the start symbol S

S → PVP   A → a  
P → AN   A → the  
V → loves  N → dog  
V → hates  N → cat  
V → eats  N → rat
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• Often, a grammar contains more than one 
production with the same left-hand side 

• Those productions can be written in a 
compressed form 

• The grammar is not changed by this 
• This example still has ten productions

S → PVP  
P → AN    
V → loves | hates | eats 
A → a | the 
N → dog | cat | rat
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Informal Definition

• Productions define permissible string substitutions 
• When a sequence of permissible substitutions starting 

from S ends in a string that is all lowercase, we say 
the grammar generates that string 

• L(G) is the set of all strings generated by grammar G

A grammar is a set of productions of the form x → y.  
The strings x and y can contain both lowercase and 
uppercase letters; x cannot be empty, but y can be ε.  
One uppercase letter is designated as the start 
symbol (conventionally, it is the letter S).
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• That final production for X says that X may be replaced by the 
empty string, so that for example abbX ⇒ abb 

• Written in the more compact way, this grammar is:

S → aS | X 
X → bX |  
ε

S → aS 
S → X  
X → bX 
X →  
ε 
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S ⇒ aS ⇒ aX ⇒ a 

S ⇒ X ⇒ bX ⇒  b 

S ⇒ aS ⇒ aX ⇒ abX ⇒ abbX ⇒  abb 

S ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaaX ⇒   
 aaabX ⇒  aaabbX ⇒  aaabb 

S → aS | X 
X → bX | ε
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• For this grammar, all derivations of lowercase 
strings follow this simple pattern: 
– First use S → aS zero or more times 
– Then use S → X once 
– Then use X → bX zero or more times 
– Then use X → ε once 

• So the generated string always consists of 
zero or more as followed by zero or more bs 

• L(G) = L(a*b*)

S → aS | X 
X → bX |  
ε 
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Untapped Power

• All our examples have used productions with a single uppercase 
letter on the left-hand side 

• Grammars can have any non-empty string on the left-hand side 
• The mechanism of substitution is the same 

– Sb → bS says that bS can be substituted for Sb 
• Such productions  can be very powerful, but we won't need that 

power yet 
• We'll concentrate on grammars with one uppercase letter on the 

left-hand side of every production
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Outline

• 10.1 A Grammar Example for English 
• 10.2 The 4-Tuple 
• 10.3 The Language Generated by a Grammar 
• 10.4 Every Regular Language Has a 

Grammar 
• 10.5 Right-Linear Grammars 
• 10.6 Every Right-linear Grammar Generates a 

Regular Language
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Formalizing Grammars

• Our informal definition relied on the difference 
between lowercase and uppercase 

• The formal definition will use two separate alphabets: 
– The terminal symbols (typically lowercase) 
– The nonterminal symbols (typically uppercase) 

• So a formal grammar has four parts…
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4-Tuple Definition

• A grammar G is a 4-tuple G = (V, Σ, S, P), where: 
– V is an alphabet, the nonterminal alphabet 
– Σ is another alphabet, the terminal alphabet, disjoint from V 
– S ∈ V is the start symbol 
– P is a finite set of productions, each of the form  

x → y, where x and y are strings over Σ ∪ V and  
x ≠ ε
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Example

• Formally, this is G = (V, Σ, S, P), where: 
– V = {S, X} 
– Σ = {a, b} 
– P = {S → aS, S → X, X → bX, X → ε} 

• The order of the 4-tuple is what counts: 
– G = ({S, X}, {a, b}, S, {S → aS, S → X, X → bX, X → ε})

S → aS | X 
X → bX |  
ε 
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Outline

• 10.1 A Grammar Example for English 
• 10.2 The 4-Tuple 
• 10.3 The Language Generated by a Grammar 
• 10.4 Every Regular Language Has a 

Grammar 
• 10.5 Right-Linear Grammars 
• 10.6 Every Right-linear Grammar Generates a 

Regular Language
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The Program

• For DFAs, we derived a zero-or-more-step δ* 
function from the one-step δ

• For NFAs, we derived a one-step relation on 
IDs, then extended it to a zero-or-more-step 
relation 

• We'll do the same kind of thing for 
grammars…
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w ⇒ z

• Defined for a grammar G = (V, Σ, S, P) 
• ⇒ is a relation on strings 
• w ⇒ z ("w derives z") if and only if there exist strings 

u, x, y, and v over Σ ∪ V, with 
– w = uxv 
– z = uyv 
– (x → y) ∈ P 

• That is , w can be transformed into z using one of the 
substitutions permitted by G
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Derivations And w ⇒* z 

• A sequence of ⇒-related strings 
x0 ⇒ x1 ⇒  ... ⇒ xn, is an n-step derivation 

• w ⇒* z if and only if there is a derivation of  
0 or more steps that starts with w and ends with z 

• That is, w can be transformed into z using a sequence 
of zero or more of the substitutions permitted by G
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L(G)

• The language generated by a grammar G is  
L(G) = {x ∈ Σ* | S ⇒* x} 

• That is, the set of fully terminal strings derivable from 
the start symbol 

• Notice the restriction x ∈ Σ*: 
– The intermediate strings in a derivation can use both  
Σ and V 

– But only the fully terminal strings are in L(G)
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Outline

• 10.1 A Grammar Example for English 
• 10.2 The 4-Tuple 
• 10.3 The Language Generated by a Grammar 
• 10.4 Every Regular Language Has a 

Grammar 
• 10.5 Right-Linear Grammars 
• 10.6 Every Right-linear Grammar Generates a 

Regular Language
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NFA to Grammar

• To show that there is a grammar for every 
regular language, we will show how to convert 
any NFA into an equivalent grammar 

• That is, given an NFA M, construct a grammar 
G with L(M) = L(G) 

• First, an example…
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Example:

• The grammar we will construct generates L(M) 
• In fact, its derivations will mimic what M does 
• For each state, our grammar will have a nonterminal symbol (S, 

R and T) 
• The start state will be the grammar's start symbol 
• The grammar will have one production for each transition of the 

NFA, and one for each accepting state

 

S R 
 

b 

c 

T 
 

 

a 
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Example:

• For each possible transition Y ∈ δ(X,z) in the 
NFA, our grammar has a production X → zY 

• That gives us these four to start with:
Transition of M Production in G  
(S,a) = {S }  S → aS  
(S,b) = {R }  S → bR  
(R,c) = {R} R  →  cR  
(R, ) = {T }  R  →  T  

 

 

S R 
 

b 

c 

T 
 

 

a 
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Example:

• In addition, for each accepting state in the 
NFA, our grammar has an ε-production 

• That adds one more:

Accepting state of M Production in G  
T  T →  

 

 

S R 
 

b 

c 

T 
 

 

a 
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Example:

• The complete grammar has one production for 
each transition, and one for each accepting 
state:

 

S R 
 

b 

c 

T 
 

 

a 

S → aS 
S → bR  
R → cR  
R → T 
T → ε
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• Compare the behavior of M as it accepts abc with the 
behavior of G as it generates abc: 

• Every time the NFA reads a symbol, the grammar 
generates that symbol 

• In general, M can be in state Y after reading string x if 
and only if G can derive the string xY

(S,abc )    

€ 

! (S,bc )    

€ 

! (R ,c )   

€ 

! (R, )    

€ 

! (T, )    
S  ⇒  a S  ⇒  abR  ⇒  abcR  ⇒  abcT  ⇒  abc  

 

 

S R 
 

b 

c 

T 
 

 

a 
S → aS 
S → bR  
R → cR  
R → T 
T → ε
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Theorem 10.4

• Proof is by construction; let M = (Q, Σ, δ, S, F) be any NFA 
• Construct G = (Q, Σ, S, P) 

– Q, Σ, and S are the same as for M 
– P is constructed from δ and F: 

• Wherever M has Y ∈ δ(X,z), P contains X → zY 
• And for each X ∈ F, P contains X → ε 

• Now G has X → zY whenever 
• By induction we can extend this to any string z ∈ Σ*: 

 G has X →* zY whenever 
• And by construction, G has Y → ε whenever M has Y ∈ F 
• So for all strings z ∈ Σ*, δ*(S,z) contains at least one element of F if and 

only if S ⇒* z 
• L(M) = L(G)

Every regular language is generated by some grammar.

      

€ 

(X ,z)! (Y,ε)

      

€ 

(X ,z)!* (Y,ε)
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Outline

• 10.1 A Grammar Example for English 
• 10.2 The 4-Tuple 
• 10.3 The Language Generated by a Grammar 
• 10.4 Every Regular Language Has a 

Grammar 
• 10.5 Right-Linear Grammars 
• 10.6 Every Right-linear Grammar Generates a 

Regular Language
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Single-Step Grammars

• A grammar G = (V, Σ, S, P) is single step if and only if every 
production in P is in one of these three forms, where X ∈ V,  
Y ∈ V, and z ∈ Σ: 
– X → zY 
– X → z 
– X → ε 

• Given any single-step grammar, we could run the previous 
construction backwards, building an equivalent NFA…
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Reverse Example

• This grammar generates L(ab*a): 
• All its productions are of the kinds 

built in our construction 
• Running the construction backwards, we get three 

states S, R, and T 
• The first three productions give us the three arrows, 

and the fourth makes T accepting:

S → aR  
R → bR  
R → aT 
T → ε

 

S R 
 

a 

b 

T 
 

a 
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Production Massage

• Even if all the productions are not of the 
required form, it is sometimes possible to 
massage them until they are 

• S → abR does not have the right form: 
– Equivalent productions S → aX and X → bR do 

• R → a does not have the right form: 
– Equivalent productions R → aY and Y → ε do 

• After those changes we can run the 
construction backwards…

S → abR  
R → a
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Massaged Reverse Example
S → abR  
R → a

S → aX 
X → bR  
R → aY 
Y → ε

 
S R 

 

a Y 
 

a X 
 

b 
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Right-Linear Grammars

• A grammar G = (V, Σ, S, P) is right linear if and only if every 
production in P is in one of these two forms, where X ∈ V,  
Y ∈ V, and z ∈ Σ*: 
– X → zY, or 
– X → z 

• So every production has: 
– A single nonterminal on the left 
– At most one nonterminal on the right, and only as the rightmost 

symbol 
• Note that this includes all single-step grammars 
• This special form makes it easy to massage the productions and 

then transform them into NFAs
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Lemma 10.5

• Proof is by construction 
• Let G = (V, Σ, S, P) be any right-linear grammar 
• Each production is X → z1...znω, where ω ∈ V or ω = ε 
• For each such production, let P contains  

these n+1 productions, where each Ki  
is a new nonterminal symbol: 

• Now let G = (V', Σ, S, P'), where V' is  
the set of nonterminals used in P' 

• Any step of a derivation G is equivalent 
to the corresponding n+1 steps in G' 

• The reverse is true for derivations of terminal strings in G' 
• So L(G) = L(G')

Every right-linear grammar G is equivalent to 
some single-step grammar G'.

X → z1K1  
K1 → z2K2  
… 
Kn-1 → znKn  
Kn → ω
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Theorem 10.6

• Proof is by construction 
• Use Lemma 10.5 to get single-step form, then use the reverse of 

the construction from Theorem 10.4

For every right-linear grammar G, L(G) is regular.
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Left-Linear Grammars

• A grammar G = (V, Σ, S, P) is left linear if and only if 
every production in P is in one of these two forms, 
where X ∈ V, Y ∈ V, and z ∈ Σ*: 
– X → Yz, or 
– X → z 

• This parallels the definition of right-linear 
• With a little more work, one can show that the 

language generated is also always regular
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Regular Grammars,  
Regular Languages

• Grammars that are either left-linear or right-linear are 
called regular grammars 

• A simple inspection tells you whether G is a regular 
grammar; if it is, L(G) is a regular language 

• Note that if G is not a regular grammar, that tells you 
nothing: L(G) might still be regular language 

• This example is not right-linear and not left-linear, but 
L(G) is the regular language L((aaa)*):

S → aSaa | ε
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The Next Big Question

• We know that all regular grammars generate 
regular languages 

• We've seen a non-regular grammar that still 
generates a regular language 

• So are there any grammars that generate 
languages that are not regular? 

• For that matter, do any non-regular languages 
exist? 

• Answers to these in the next chapter
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