Chapter Eleven: Non-Regular Languages

Formal Language, chapter 11, slide 1

We have now encountered regular languages in several different places. They are the languages that can be recognized by a DFA. They are the languages that can be recognized by an NFA. They are the languages that can be denoted by a regular expression. They are the languages that can be generated by a right-linear grammar. You might begin to wonder: are there any languages that are not regular?

In this chapter, we will see that there are. There is a proof tool that is often used to prove languages non-regular. It is called the pumping lemma, and it describes an important property that all regular languages have. If you can show that a given language does not have this property, you can conclude that it is not a regular language.

Outline

- 11.1 The Language {*aⁿbⁿ*}
- 11.2 The Languages {*xx^R*}
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

The Language {*aⁿbⁿ*}

- Any number of *a*s followed by the same number of *b*s
- Easy to give a grammar for this language:

$S \rightarrow aSb \mid \varepsilon$

- All derivations of a fully terminal string use the first production n=0 or more times, then the last production once: aⁿbⁿ
- Is it a regular language? For example, is there an NFA for it?

Trying To Build An NFA

- We'll try working up to it
- The subset $\{a^n b^n \mid n \le 0\}$:

• The subset $\{a^n b^n \mid n \le 1\}$:

The Subset $\{a^n b^n \mid n \le 2\}$

The Subset $\{a^n b^n \mid n \le 3\}$

A Futile Effort

- For each larger value of *n* we added two more states
- We're using the states to count the *a*s, then to check that the same number of *b*s follow
- That's not going to be a successful pattern on which to build an NFA for all of {aⁿbⁿ}
 - NFA needs a fixed, finite number of states
 - No fixed, finite number will be enough to count the unbounded n in {aⁿbⁿ}
- This is *not* a proof that no NFA can be constructed
- But it does contain the germ of an idea for a proof...

Theorem 11.1

The language $\{a^nb^n\}$ is not regular.

- Let $M = (Q, \{a, b\}, \delta, q_0, F)$ be any DFA over the alphabet $\{a, b\}$; we'll show that $L(M) \neq \{a^n b^n\}$
- Given as for input, *M* visits a sequence of states: $- \delta^*(q_0, \varepsilon)$, then $\delta^*(q_0, a)$, then $\delta^*(q_0, aa)$, and so on
- Since Q is finite, M eventually revisits one: $-\exists i \text{ and } j \text{ with } i < j \text{ such that } \delta^*(q_0, a^i) = \delta^*(q_0, a^j)$
- Append b^{j} , and we see that $\delta^{*}(q_{0}, a^{j}b^{j}) = \delta^{*}(q_{0}, a^{j}b^{j})$
- So *M* either accepts both *aⁱb^j* and *a^jb^j*, or rejects both
- $\{a^n b^n\}$ contains $a^j b^j$ but not $a^j b^j$, so $L(M) \neq \{a^n b^n\}$
- So no DFA has $L(M) = \{a^n b^n\}$: $\{a^n b^n\}$ is not regular

A Word About That Proof

- Nothing was assumed about the DFA M, except its alphabet {a,b}
- In spite of that, we were able to infer quite a lot about its behavior
- The basic insight: with a sufficiently long string we can force any DFA to repeat a state
- That's the basis of a wide variety of nonregularity proofs

Outline

- 11.1 The Language {*aⁿbⁿ*}
- 11.2 The Languages {*xx^R*}
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

The Languages {*xx*^{*R*}}

- The notation *x*^{*R*} means the string *x*, reversed
- {*xx^R*} is the set of strings that can be formed by taking any string in Σ*, and appending the same string, reversed
- For Σ = {a,b}, {xx^R} includes the strings ε, aa, bb, abba, baab, aaaa, bbbb, and so on
- Another way of saying it: {*xx^R*} is the set of even-length palindromes

A Grammar For $\{xx^R \mid x \in \{a,b\}^*\}$

$S \rightarrow aSa \mid bSb \mid \epsilon$

• A derivation for *abba*:

 $- S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$

• A derivation for *abaaba*:

 $- S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaba$

- Every time you use one of the first two productions, you add a symbol to the end of the first half, and the same symbol to the start of the second half
- So the second half is always the reverse of the first half: L(G) = {xx^R | x ∈ {a,b}*}
- But is this language regular?

Intuition

- After seeing the first example, you may already have the feeling this can't be regular
 - A finite state machine would have to use states to keep track of x, then check that it is followed by a matching x^R
 - But there is no bound on the length of x, so no fixed, finite number of states will suffice
- The formal proof is very similar to the one we used for {aⁿbⁿ}...

Theorem 11.2

The language $\{xx^R\}$ is not regular for any alphabet with at least two symbols.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be any DFA with $|\Sigma| \ge 2$; we'll show that $L(M) \ne \{xx^R\}$
- Σ has at least two symbols; call two of these *a* and *b*
- Given as for input, *M* visits a sequence of states:
 δ*(q₀,ε), then δ*(q₀,a), then δ*(q₀,aa), and so on
- Since Q is finite, M eventually revisits one:

 $= \exists i \text{ and } j \text{ with } i < j \text{ such that } \delta^*(q_0, a^i) = \delta^*(q_0, a^j)$

- Append *bba^j*, and we see that $\delta^*(q_0, a^i b b a^j) = \delta^*(q_0, a^j b b a^j)$
- So *M* either accepts both *aⁱbba^j* and *a^jbba^j*, or rejects both
- { xx^R } contains $a^i b b a^i$ but not $a^i b b a^j$, so $L(M) \neq {xx^R}$
- So no DFA has $L(M) = \{xx^R\}$: $\{xx^R\}$ is not regular

Outline

- 11.1 The Language {*aⁿbⁿ*}
- 11.2 The Languages {*xx^R*}
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

Review

- We've shown two languages non-regular: {aⁿbⁿ} and {xx^R}
- In both cases, the key idea was to choose a string long enough to make any given DFA repeat a state
- For both those proofs we just used strings of as, and showed that $\exists i$ and j with i < j such that $\delta^*(q_0, a^i) = \delta^*(q_0, a^j)$

Multiple Repetitions

- When you've found a state that repeats once, you can make it repeat again and again
- For example, our $\delta^*(q_0, a^i) = \delta^*(q_0, a^j)$:
 - Let *r* be the state in question: $r = \delta^*(q_0, a^i)$
 - After *j-i* more as it repeats: $r = \delta^*(q_0, a^{i+(j-i)})$
 - That little substring a^(j-i) takes it from state r back to state r

$$r = \delta^*(q_0, a^i)$$

= $\delta^*(q_0, a^{i+(j-i)})$
= $\delta^*(q_0, a^{i+2(j-i)})$
= $\delta^*(q_0, a^{i+3(j-i)})$

Pumping

- We say that the substring a^(j-i) can be pumped any number of times, and the DFA always ends up in the same state
- All regular languages have an important property involving pumping
- Any sufficiently long string in a regular language must contain a pumpable substring
- Formally, the pumping lemma...

Lemma 11.3: The Pumping Lemma for Regular Languages

For all regular languages *L* there exists some integer *k* such that for all $xyz \in L$ with $|y| \ge k$, there exist uvw = y with |v| > 0, such that for all $i \ge 0$, $xuv^iwz \in L$.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be any DFA with L(M) = L
- Choose *k* = |*Q*|
- Consider any x, y, and z with $xyz \in L$ and $|y| \ge k$
- Let *r* be a state that repeats during the *y* part of *xyz*
 - We know such a state exists because we have $|y| \ge |Q|...$

Lemma 11.3: The Pumping Lemma for Regular Languages

For all regular languages *L* there exists some integer *k* such that for all $xyz \in L$ with $|y| \ge k$, there exist uvw = y with |v| > 0, such that for all $i \ge 0$, $xuv^iwz \in L$.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be any DFA with L(M) = L
- Choose *k* = |*Q*|
- Consider any x, y, and z with $xyz \in L$ and $|y| \ge k$
- Let *r* be a state that repeats during the *y* part of *xyz*
- Choose uvw = y so that $\delta^*(q_0, xu) = \delta^*(q_0, xuv) = r$
- Now v is pumpable: for all $i \ge 0$, $\delta^*(q_0, xuv^i) = r...$

Lemma 11.3: The Pumping Lemma for Regular Languages

For all regular languages *L* there exists some integer *k* such that for all $xyz \in L$ with $|y| \ge k$, there exist uvw = y with |v| > 0, such that for all $i \ge 0$, $xuv^iwz \in L$.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be any DFA with L(M) = L
- Choose *k* = |*Q*|
- Consider any x, y, and z with $xyz \in L$ and $|y| \ge k$
- Let *r* be a state that repeats during the *y* part of *xyz*
- Choose uvw = y so that $\delta^*(q_0, xu) = \delta^*(q_0, xuv) = r$
- Now v is pumpable: for all $i \ge 0$, $\delta^*(q_0, xuv') = r$
- Then for all $i \ge 0$, $\delta^*(q_0, xuv'wz) = \delta^*(q_0, xuvwz) = \delta^*(q_0, xyz) \in F$
- Therefore, for all $i \ge 0$, $xuv'wz \in L$

Formal Language, chapter 11, slide 22

Pumping Lemma Structure

For all regular languages *L* there exists some integer *k* such that for all $xyz \in L$ with $|y| \ge k$, there exist uvw = y with |v| > 0, such that for all $i \ge 0$, $xuv^iwz \in L$.

- Notice the alternating "for all" and "there exist" clauses:
 - 1. ∀*L*...
 - 2. ∃*k*...
 - 3. ∀ *xyz* …
 - 4. ∃ *uvw* …
 - 5. ∀*i*...
- Our proof showed how to construct the 3 parts
- But that isn't part of the lemma: it's a black box
- The lemma says only that *k* and *uvw* exist

Outline

- 11.1 The Language {*aⁿbⁿ*}
- 11.2 The Languages {*xx^R*}
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

Pumping-Lemma Proofs

- The pumping lemma is very useful for proving that languages are not regular
- For example, {*aⁿbⁿ*}...

{aⁿbⁿ} Is Not Regular

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $L = \{a^n b^n\}$ is regular, so the pumping lemma holds for *L*. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

$$x = a^k$$
$$y = b^k$$
$$z = \varepsilon$$

Now $xyz = a^k b^k \in L$ and $|y| \ge k$ as required.

- Let *u*, *v*, and *w* be as given by the pumping lemma, so that uvw = y, |v| > 0, and for all $i \ge 0$, $xuv^iwz \in L$.
- 4 Choose *i* = 2. Since *v* contains at least one *b* and nothing but *b*s, uv^2w has more *b*s than uvw. So xuv^2wz has more *b*s than *a*s, and so $xuv^2wz \notin L$.
- 5 By contradiction, $L = \{a^n b^n\}$ is not regular.

The Game

- The alternating ∀ and ∃ clauses of the pumping lemma make these proofs a kind of game
- The ∃ parts (k and uvw) are the pumping lemma's moves: these values exist, but are not ours to choose
- The ∀ parts (*L*, *xyz*, and *i*) are our moves: the lemma holds for all proper values, so we have free choice
- We make our moves strategically, to force a contradiction
- No matter what the pumping lemma does with its moves, we want to end up with some xuvⁱwz ∉ L

The Pattern

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $L = \{a^n b^n\}$ is regular, so the pumping lemma holds for *L*. Let *k* be as given by the pumping lemma.
- 2.

Here, you chose *xyz* and show that they meet the requirements, $xyz \in L$ and $|y| \ge k$. Choose them so that pumping in the *y* part will lead to a contradiction, a string $\notin L$.

- 3 Let *u*, *v*, and *w* be as given by the pumping lemma, so that uvw = y, |v| > 0, and for all $i \ge 0$, $xuv^iwz \in L$.
- 4 Here, you choose i, the number of times to pump, and show that you have a contradiction: $xuv^iwz \notin L$.
- 5 By contradiction, $L = \{a^n b^n\}$ is not regular.

{xx^R} Is Not Regular

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $L = \{xx^R\}$ is regular, so the pumping lemma holds for *L*. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

$$x = a^k bb$$
$$y = a^k$$
$$z = \varepsilon$$

Now $xyz = a^k bba^k \in L$ and $|y| \ge k$ as required.

- Let *u*, *v*, and *w* be as given by the pumping lemma, so that uvw = y, |v| > 0, and for all $i \ge 0$, $xuv^iwz \in L$.
- 4 Choose *i* = 2. Since *v* contains at least one *a* and nothing but *a*s, uv^2w has more *a*s than uvw. So xuv^2wz has more *a*s after the *b*s than before them, and thus $xuv^2wz \notin L$.
- 5 By contradiction, $L = \{xx^R\}$ is not regular.

Outline

- 11.1 The Language {*aⁿbⁿ*}
- 11.2 The Languages {*xx^R*}
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

Proof Strategy

- It all comes down to those four delicate choices: xyz and i
- Usually, there are a number of choices that successfully lead to a contradiction
- And, of course many others that fail
- For example: let $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$
- We'll try a pumping-lemma proof that A is not regular

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

x = aaa y = b z = aaa **?**

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

Bad choice. The pumping lemma requires $|y| \ge k$. It never applies to fixedsize examples. Since *k* is not known in advance, *y* must be some string that is constructed using *k*, such as a^k .

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

 $x = \varepsilon$ $y = a^{k}$ $z = a^{k}$

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

Bad choice. The pumping lemma lemma only applies if the string $xyz \in A$. That is not the case here.

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

 $x = a^n$ y = b $z = a^n$

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

$$x = a^n$$
$$y = b$$
$$z = a^n$$

This is ill-formed, since the value of n is not defined. At this point the only integer variable that is defined is k.

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

$$x = a^{k}$$
$$y = b^{k+2}$$
$$z = a^{k}$$
?

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

$$x = a^{k}$$
$$y = b^{k+2}$$
$$z = a^{k}$$

This meets the requirements $xyz \in A$ and $|y| \ge k$, but it is a bad choice because it won't lead to a contradiction. Pumping within the string *y* will change the number of *b*s in the middle, but the resulting string can still be in *A*.

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

This meets the requirements $xyz \in A$ and $y| \ge k$, but it is a bad choice because it won't lead to a contradiction. The pumping lemma can choose any uvw = y with |v| > 0. If it chooses u=b, v=b, and $w = a^k$, there will be no contradiction, since for all $i \ge 0$, $xuv^iwz \in A$.

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

 $x = a^{k}b$ $y = a^{k}$ $z = \varepsilon$

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

Good choice. It meets the requirements $xyz \in A$ and $|y| \ge k$, and it will lead to a contradiction because pumping anywhere in the *y* part will change the number of *a*s after the *b*, without changing the number before the *b*.

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

 $x = \varepsilon$ $y = a^{k}$ $z = ba^{k}$?

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

An equally good choice.

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

x = ε y = a^k z = ba^k

Now $xyz = a^k ba^k \in A$ and $|y| \ge k$ as required.

- Let *u*, *v*, and *w* be as given by the pumping lemma, so that uvw = y, |v| > 0, and for all $i \ge 0$, $xuv^iwz \in A$.
- 1. Choose *i* = 1

?

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

$$x = \varepsilon$$
$$y = a^k$$
$$z = ba^k$$

Now $xyz = a^k ba^k \in A$ and $|y| \ge k$ as required.

- Let *u*, *v*, and *w* be as given by the pumping lemma, so that uvw = y, |v| > 0, and for all $i \ge 0$, $xuv^iwz \in A$.
- 1. Choose *i* = 1

Bad choice -- the only bad choice for *i* in this case! When i = 1, $xuv^iwz \in A$, so there is no contradiction.

- 1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2. Choose *x*, *y*, and *z* as follows:

 $x = \varepsilon$ $y = a^{k}$ $z = ba^{k}$

Now $xyz = a^k ba^k \in A$ and $|y| \ge k$ as required.

- Let *u*, *v*, and *w* be as given by the pumping lemma, so that uvw = y, |v| > 0, and for all $i \ge 0$, $xuv^iwz \in A$.
- 4 Choose *i* = 2. Since *v* contains at least one *a* and nothing but *a*s, uv^2w has more *a*s than uvw. So xuv^2wz has more *a*s before the *b* than after it, and thus $xuv^2wz \notin A$.
- 5 By contradiction, *A* is not regular.

Outline

- 11.1 The Language {*aⁿbⁿ*}
- 11.2 The Languages {*xx^R*}
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

What About Finite Languages?

For all regular languages *L* there exists some integer *k* such that for all $xyz \in L$ with $|y| \ge k$, there exist uvw = y with |v| > 0, such that for all $i \ge 0$, $xuv^iwz \in L$.

- The pumping lemma applies in a trivial way to any finite language *L*
- Choose k greater than the length of the longest string in L
- Then it is clearly true that "for all xyz ∈ L with |y| ≥ k,
 ..." since there are no strings in L with |y| ≥ k
- It is vacuously true
- In fact, all finite languages are regular...

Formal Language, chapter 11, slide 50

Theorem 11.6

All finite languages are regular.

- Let A be any finite language of n strings: $A = \{x_1, ..., x_n\}$
- There is a regular expression that denotes this language: $A = L(x_1 + ... + x_n)$
- Or, in case n = 0, $A = L(\emptyset)$
- Since A is denoted by a regular expression, A is a regular language