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Chapter Eleven: 
Non-Regular Languages
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We have now encountered regular languages in several different places.  
They are the languages that can be recognized by a DFA.  They are the 
languages that can be recognized by an NFA.  They are the languages 

that can be denoted by a regular expression.  They are the languages that 
can be generated by a right-linear grammar.  You might begin to wonder: 

are there any languages that are not regular? 

In this chapter, we will see that there are.  There is a proof tool that is 
often used to prove languages non-regular.  It is called the pumping 

lemma, and it describes an important property that all regular languages 
have.  If you can show that a given language does not have this 

property, you can conclude that it is not a regular language.
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Outline

• 11.1 The Language {anbn} 
• 11.2 The Languages {xxR} 
• 11.3 Pumping 
• 11.4 Pumping-Lemma Proofs 
• 11.5 Strategies 
• 11.6 Pumping And Finite Languages
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S → aSb | ε

The Language {anbn}

• Any number of as followed by the same number of bs 
• Easy to give a grammar for this language: 

• All derivations of a fully terminal string use the first 
production n=0 or more times, then the last production 
once: anbn 

• Is it a regular language?  For example, is there an 
NFA for it?
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Trying To Build An NFA

• We'll try working up to it 
• The subset {anbn |  n ≤ 0}: 

• The subset {anbn |  n ≤ 1}:
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The Subset {anbn |  n ≤ 2}
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The Subset {anbn |  n ≤ 3}
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A Futile Effort

• For each larger value of n we added two more states 
• We're using the states to count the as, then to check that the 

same number of bs follow 
• That's not going to be a successful pattern on which to build an 

NFA for all of {anbn} 
– NFA needs a fixed, finite number of states 
– No fixed, finite number will be enough to count the unbounded n in 

{anbn} 
• This is not a proof that no NFA can be constructed 
• But it does contain the germ of an idea for a proof…
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Theorem 11.1

• Let M = (Q, {a,b}, δ, q0, F) be any DFA over the 
alphabet {a,b}; we'll show that L(M) ≠ {anbn} 

• Given as for input, M visits a sequence of states:  
– δ*(q0,ε), then δ*(q0,a), then δ*(q0,aa), and so on 

• Since Q is finite, M eventually revisits one: 
– ∃ i and j with i < j such that δ*(q0,ai) = δ*(q0,aj)  

• Append bj, and we see that δ*(q0,aibj) = δ*(q0,ajbj) 
• So M either accepts both aibj and ajbj, or rejects both 
• {anbn} contains ajbj but not aibj, so L(M) ≠ {anbn} 

• So no DFA has L(M) = {anbn}: {anbn} is not regular 

The language {anbn} is not regular.
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A Word About That Proof

• Nothing was assumed about the DFA M, 
except its alphabet {a,b} 

• In spite of that, we were able to infer quite a 
lot about its behavior 

• The basic insight: with a sufficiently long string 
we can force any DFA to repeat a state 

• That's the basis of a wide variety of non-
regularity proofs
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The Languages {xxR}

• The notation xR means the string x, reversed 
• {xxR} is the set of strings that can be formed 

by taking any string in Σ*, and appending the 
same string, reversed 

• For Σ = {a,b}, {xxR} includes the strings ε, aa, 
bb, abba, baab, aaaa, bbbb, and so on 

• Another way of saying it: {xxR} is the set of 
even-length palindromes
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S → aSa | bSb | ε

A Grammar For {xxR | x ∈ {a,b}*}

• A derivation for abba: 
– S ⇒ aSa ⇒abSba ⇒ abba 

• A derivation for abaaba: 
– S ⇒ aSa ⇒abSba ⇒ abaSaba ⇒ abaaba 

• Every time you use one of the first two productions, 
you add a symbol to the end of the first half, and the 
same symbol to the start of the second half 

• So the second half is always the reverse of the first 
half: L(G) = {xxR | x ∈ {a,b}*} 

• But is this language regular?
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Intuition

• After seeing the first example, you may 
already have the feeling this can't be regular 
– A finite state machine would have to use states to 

keep track of x, then check that it is followed by a 
matching xR 

– But there is no bound on the length of x, so no 
fixed, finite number of states will suffice 

• The formal proof is very similar to the one we 
used for {anbn}…
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Theorem 11.2

• Let M = (Q, Σ, δ, q0, F) be any DFA with | Σ| ≥ 2; we'll show that L(M) 
≠ {xxR} 

• Σ has at least two symbols; call two of these a and b 
• Given as for input, M visits a sequence of states:  

– δ*(q0,ε), then δ*(q0,a), then δ*(q0,aa), and so on 
• Since Q is finite, M eventually revisits one: 

– ∃ i and j with i < j such that δ*(q0,ai) = δ*(q0,aj)  
• Append bbaj, and we see that δ*(q0,aibbaj) = δ*(q0,ajbbaj) 
• So M either accepts both aibbaj and ajbbaj, or rejects both 
• {xxR} contains ajbbaj but not aibbaj, so L(M) ≠ {xxR} 

• So no DFA has L(M) = {xxR}: {xxR} is not regular 

The language {xxR} is not regular for any 
alphabet with at least two symbols.
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Review

• We've shown two languages non-regular: 
{anbn} and {xxR} 

• In both cases, the key idea was to choose a 
string long enough to make any given DFA 
repeat a state 

• For both those proofs we just used strings of 
as, and showed that ∃ i and j with i < j such 
that δ*(q0,ai) = δ*(q0,aj)
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Multiple Repetitions
• When you've found a state that repeats once, 

you can make it repeat again and again 
• For example, our δ*(q0,ai) = δ*(q0,aj): 

– Let r be the state in question: r = δ*(q0,ai) 

– After j-i more as it repeats: r = δ*(q0,ai+(j-i)) 
– That little substring a(j-i) takes it from state r back to 

state r 
– r = δ*(q0,ai)  

 = δ*(q0,ai+(j-i))  
 = δ*(q0,ai+2(j-i))  
 = δ*(q0,ai+3(j-i))
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Pumping

• We say that the substring a(j-i) can be pumped 
any number of times, and the DFA always 
ends up in the same state 

• All regular languages have an important 
property involving pumping 

• Any sufficiently long string in a regular 
language must contain a pumpable substring 

• Formally, the pumping lemma…
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Lemma 11.3: The Pumping Lemma 
for Regular Languages

• Let M = (Q, Σ, δ, q0, F) be any DFA with L(M) = L 
• Choose k = |Q| 
• Consider any x, y, and z with xyz ∈ L and |y| ≥ k 
• Let r be a state that repeats during the y part of xyz 

– We know such a state exists because we have |y| ≥ |Q|…

For all regular languages L there exists some integer k 
such that for all xyz ∈ L with |y| ≥ k, there exist uvw = y 
with |v| >0, such that for all i ≥ 0, xuviwz ∈ L.

x y z

In state r here And again here
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Lemma 11.3: The Pumping Lemma 
for Regular Languages

• Let M = (Q, Σ, δ, q0, F) be any DFA with L(M) = L 
• Choose k = |Q| 
• Consider any x, y, and z with xyz ∈ L and |y| ≥ k 
• Let r be a state that repeats during the y part of xyz 
• Choose uvw = y so that δ*(q0,xu) = δ*(q0,xuv) = r 
• Now v is pumpable: for all i ≥ 0, δ*(q0,xuvi) = r…

For all regular languages L there exists some integer k 
such that for all xyz ∈ L with |y| ≥ k, there exist uvw = y 
with |v| >0, such that for all i ≥ 0, xuviwz ∈ L.

x z

In state r here And again here

u v w
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Lemma 11.3: The Pumping Lemma 
for Regular Languages

• Let M = (Q, Σ, δ, q0, F) be any DFA with L(M) = L 
• Choose k = |Q| 
• Consider any x, y, and z with xyz ∈ L and |y| ≥ k 
• Let r be a state that repeats during the y part of xyz 
• Choose uvw = y so that δ*(q0,xu) = δ*(q0,xuv) = r 
• Now v is pumpable: for all i ≥ 0, δ*(q0,xuv

i) = r 
• Then for all i ≥ 0, δ*(q0,xuv

i
wz) = δ*(q0,xuvwz) = δ*(q0,xyz) ∈ F 

• Therefore, for all i ≥ 0, xuv
i
wz ∈ L

For all regular languages L there exists some integer k 
such that for all xyz ∈ L with |y| ≥ k, there exist uvw = y 
with |v| >0, such that for all i ≥ 0, xuviwz ∈ L.

x zu v wv v…
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Pumping Lemma Structure

• Notice the alternating "for all" and "there exist" clauses: 
1. ∀ L … 
2. ∃ k … 
3. ∀ xyz … 
4. ∃ uvw … 
5. ∀ i … 

• Our proof showed how to construct the ∃ parts 
• But that isn't part of the lemma: it's a black box 
• The lemma says only that k and uvw exist

For all regular languages L there exists some integer k 
such that for all xyz ∈ L with |y| ≥ k, there exist uvw = y 
with |v| >0, such that for all i ≥ 0, xuviwz ∈ L.
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Pumping-Lemma Proofs

• The pumping lemma is very useful for proving 
that languages are not regular 

• For example, {anbn}…
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{anbn} Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that L = {anbn} is regular, so the pumping lemma 
holds for L.  Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = ak 
 y = bk 
 z = ε 

 Now xyz = akbk ∈ L and |y| ≥ k as required. 
3 Let u, v, and w be as given by the pumping lemma, so that uvw = y, |v| 

> 0, and for all i ≥ 0, xuviwz ∈ L. 
4 Choose i = 2.  Since v contains at least one b and nothing but bs, uv2w 

has more bs than uvw.  So xuv2wz has more bs than as, and so 
xuv2wz ∉ L. 

5 By contradiction, L = {anbn} is not regular.
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The Game

• The alternating ∀ and ∃ clauses of the pumping lemma make 
these proofs a kind of game 

• The ∃ parts (k and uvw) are the pumping lemma's moves: these 
values exist, but are not ours to choose 

• The ∀ parts (L, xyz, and i) are our moves: the lemma holds for all 
proper values, so we have free choice 

• We make our moves strategically, to force a contradiction 
• No matter what the pumping lemma does with its moves, we 

want to end up with some xuviwz ∉ L
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The Pattern
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that L = {anbn} is regular, so the pumping lemma 
holds for L.  Let k be as given by the pumping lemma. 

2.   
  
  
  

  
3 Let u, v, and w be as given by the pumping lemma, so that uvw = y, |v| 

> 0, and for all i ≥ 0, xuviwz ∈ L. 
4   

  

5 By contradiction, L = {anbn} is not regular.

Here, you chose xyz and show that they meet the requirements, 
xyz ∈ L and |y| ≥ k.  Choose them so that pumping in the y part 
will lead to a contradiction, a string ∉ L.

Here, you choose i, the number of times to pump, and show that 
you have a contradiction: xuviwz ∉ L.
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{xxR} Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that L = {xxR} is regular, so the pumping lemma 
holds for L.  Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = akbb 
 y = ak 
 z = ε 

 Now xyz = akbbak ∈ L and |y| ≥ k as required. 
3 Let u, v, and w be as given by the pumping lemma, so that uvw = y, |v| 

> 0, and for all i ≥ 0, xuviwz ∈ L. 
4 Choose i = 2.  Since v contains at least one a and nothing but as, uv2w 

has more as than uvw.  So xuv2wz has more as after the bs than 
before them, and thus xuv2wz ∉ L. 

5 By contradiction, L = {xxR} is not regular.
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Proof Strategy

• It all comes down to those four delicate 
choices: xyz and i 

• Usually, there are a number of choices that 
successfully lead to a contradiction 

• And, of course many others that fail 
• For example: let A = {anbjan | n ≥ 0, j ≥ 1} 
• We'll try a pumping-lemma proof that A is not 

regular
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = aaa 
 y = b 
 z = aaa 

?

Formal Language, chapter 11, slide 32



33

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = aaa 
 y = b 
 z = aaa

Bad choice.  The pumping lemma 
requires |y| ≥ k.  It never applies to fixed-
size examples.  Since k is not known in 
advance, y must be some string that is 
constructed using k, such as ak.
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = ε 
 y = ak 
 z = ak 

?
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = ε 
 y = ak 
 z = ak

Bad choice.  The pumping lemma lemma 
only applies if the string xyz ∈ A.  That is 
not the case here.
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = an 
 y = b 
 z = an 

?
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = an 
 y = b 
 z = an

This is ill-formed, since the value of n is 
not defined.  At this point the only integer 
variable that is defined is k.
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = ak 
 y = bk+2 
 z = ak 

?
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = ak 
 y = bk+2 
 z = ak

This meets the requirements xyz ∈ A and 
|y| ≥ k, but it is a bad choice because it 
won't lead to a contradiction. Pumping 
within the string y will change the number 
of bs in the middle, but the resulting 
string can still be in A.
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = ak 
 y = bbak 
 z = ε 

?
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = ak 
 y = bbak 
 z = ε

This meets the requirements xyz ∈ A and 
y| ≥ k, but it is a bad choice because it 
won't lead to a contradiction. The 
pumping lemma can choose any uvw = y 
with |v| > 0.  If it chooses u=b, v=b, and w 
= ak, there will be no contradiction, since 
for all i ≥ 0,  
xuviwz ∈ A.
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = akb 
 y = ak 
 z = ε 

?
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = akb 
 y = ak 
 z = ε

Good choice. It meets the requirements 
xyz ∈ A and |y| ≥ k, and it will lead to a 
contradiction because pumping anywhere 
in the y part will change the number of as 
after the b, without changing the number 
before the b.
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = ε 
 y = ak 
 z = bak 

?
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = ε 
 y = ak 
 z = bak

An equally good choice.
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  Let k be 
as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = ε 
 y = ak 
 z = bak 

 Now xyz = akbak ∈ A and |y| ≥ k as required. 
3 Let u, v, and w be as given by the pumping lemma, so that uvw = y, |v| 

> 0, and for all i ≥ 0, xuviwz ∈ A. 
1. Choose i = 1 

 ?
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  
Let k be as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = ε 
 y = ak 
 z = bak 

 Now xyz = akbak ∈ A and |y| ≥ k as required. 
3 Let u, v, and w be as given by the pumping lemma, so that uvw 

= y, |v| > 0, and for all i ≥ 0, xuviwz ∈ A. 
1. Choose i = 1

Bad choice -- the only bad choice for i in 
this case!  When i = 1, xuviwz ∈ A, so 
there is no contradiction.
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A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular 

languages.  Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.  Let k be 
as given by the pumping lemma. 

2. Choose x, y, and z as follows: 
 x = ε 
 y = ak 
 z = bak 

 Now xyz = akbak ∈ A and |y| ≥ k as required. 
3 Let u, v, and w be as given by the pumping lemma, so that uvw = y, |v| 

> 0, and for all i ≥ 0, xuviwz ∈ A. 
4 Choose i = 2.  Since v contains at least one a and nothing but as, uv2w 

has more as than uvw.  So xuv2wz has more as before the b than after 
it, and thus xuv2wz ∉ A. 

5 By contradiction, A is not regular.
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What About Finite Languages?

• The pumping lemma applies in a trivial way to any 
finite language L 

• Choose k greater than the length of the longest string 
in L 

• Then it is clearly true that "for all xyz ∈ L with |y| ≥ k, 
…" since there are no strings in L with |y| ≥ k 

• It is vacuously true 
• In fact, all finite languages are regular…

For all regular languages L there exists some integer k 
such that for all xyz ∈ L with |y| ≥ k, there exist uvw = y 
with |v| >0, such that for all i ≥ 0, xuviwz ∈ L.
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Theorem 11.6

• Let A be any finite language of n strings:  
A = {x1, ..., xn} 

• There is a regular expression that denotes this 
language: A = L(x1+ ...+ xn) 

• Or, in case n = 0, A = L(∅) 
• Since A is denoted by a regular expression, A 

is a regular language

All finite languages are regular.
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