
1

Chapter Eleven: 
Non-Regular Languages

Formal Language, chapter 11, slide 1

2

We have now encountered regular languages in several different places.
They are the languages that can be recognized by a DFA. They are the
languages that can be recognized by an NFA. They are the languages

that can be denoted by a regular expression. They are the languages that
can be generated by a right-linear grammar. You might begin to wonder:

are there any languages that are not regular?

In this chapter, we will see that there are. There is a proof tool that is
often used to prove languages non-regular. It is called the pumping

lemma, and it describes an important property that all regular languages
have. If you can show that a given language does not have this

property, you can conclude that it is not a regular language.

Formal Language, chapter 11, slide 2

3

Outline

• 11.1 The Language {anbn}
• 11.2 The Languages {xxR}
• 11.3 Pumping
• 11.4 Pumping-Lemma Proofs
• 11.5 Strategies
• 11.6 Pumping And Finite Languages

Formal Language, chapter 11, slide 3

4

S → aSb | ε

The Language {anbn}

• Any number of as followed by the same number of bs
• Easy to give a grammar for this language:

• All derivations of a fully terminal string use the first
production n=0 or more times, then the last production
once: anbn

• Is it a regular language? For example, is there an
NFA for it?

Formal Language, chapter 11, slide 4

5

Trying To Build An NFA

• We'll try working up to it
• The subset {anbn | n ≤ 0}:

• The subset {anbn | n ≤ 1}:

 a

b

Formal Language, chapter 11, slide 5

6

The Subset {anbn | n ≤ 2}

 a

b

b

a

Formal Language, chapter 11, slide 6

7

The Subset {anbn | n ≤ 3}

 a

b

b

a a

b

Formal Language, chapter 11, slide 7

8

A Futile Effort

• For each larger value of n we added two more states
• We're using the states to count the as, then to check that the

same number of bs follow
• That's not going to be a successful pattern on which to build an

NFA for all of {anbn}
– NFA needs a fixed, finite number of states
– No fixed, finite number will be enough to count the unbounded n in

{anbn}
• This is not a proof that no NFA can be constructed
• But it does contain the germ of an idea for a proof…

Formal Language, chapter 11, slide 8

9

Theorem 11.1

• Let M = (Q, {a,b}, δ, q0, F) be any DFA over the
alphabet {a,b}; we'll show that L(M) ≠ {anbn}

• Given as for input, M visits a sequence of states:
– δ*(q0,ε), then δ*(q0,a), then δ*(q0,aa), and so on

• Since Q is finite, M eventually revisits one:
– ∃ i and j with i < j such that δ*(q0,ai) = δ*(q0,aj)

• Append bj, and we see that δ*(q0,aibj) = δ*(q0,ajbj)
• So M either accepts both aibj and ajbj, or rejects both
• {anbn} contains ajbj but not aibj, so L(M) ≠ {anbn}

• So no DFA has L(M) = {anbn}: {anbn} is not regular

The language {anbn} is not regular.

Formal Language, chapter 11, slide 9

10

A Word About That Proof

• Nothing was assumed about the DFA M,
except its alphabet {a,b}

• In spite of that, we were able to infer quite a
lot about its behavior

• The basic insight: with a sufficiently long string
we can force any DFA to repeat a state

• That's the basis of a wide variety of non-
regularity proofs

Formal Language, chapter 11, slide 10

11

Outline

• 11.1 The Language {anbn}
• 11.2 The Languages {xxR}
• 11.3 Pumping
• 11.4 Pumping-Lemma Proofs
• 11.5 Strategies
• 11.6 Pumping And Finite Languages

Formal Language, chapter 11, slide 11

12

The Languages {xxR}

• The notation xR means the string x, reversed
• {xxR} is the set of strings that can be formed

by taking any string in Σ*, and appending the
same string, reversed

• For Σ = {a,b}, {xxR} includes the strings ε, aa,
bb, abba, baab, aaaa, bbbb, and so on

• Another way of saying it: {xxR} is the set of
even-length palindromes

Formal Language, chapter 11, slide 12

13

S → aSa | bSb | ε

A Grammar For {xxR | x ∈ {a,b}*}

• A derivation for abba:
– S ⇒ aSa ⇒abSba ⇒ abba

• A derivation for abaaba:
– S ⇒ aSa ⇒abSba ⇒ abaSaba ⇒ abaaba

• Every time you use one of the first two productions,
you add a symbol to the end of the first half, and the
same symbol to the start of the second half

• So the second half is always the reverse of the first
half: L(G) = {xxR | x ∈ {a,b}*}

• But is this language regular?

Formal Language, chapter 11, slide 13

14

Intuition

• After seeing the first example, you may
already have the feeling this can't be regular
– A finite state machine would have to use states to

keep track of x, then check that it is followed by a
matching xR

– But there is no bound on the length of x, so no
fixed, finite number of states will suffice

• The formal proof is very similar to the one we
used for {anbn}…

Formal Language, chapter 11, slide 14

15

Theorem 11.2

• Let M = (Q, Σ, δ, q0, F) be any DFA with | Σ| ≥ 2; we'll show that L(M)
≠ {xxR}

• Σ has at least two symbols; call two of these a and b
• Given as for input, M visits a sequence of states:

– δ*(q0,ε), then δ*(q0,a), then δ*(q0,aa), and so on
• Since Q is finite, M eventually revisits one:

– ∃ i and j with i < j such that δ*(q0,ai) = δ*(q0,aj)
• Append bbaj, and we see that δ*(q0,aibbaj) = δ*(q0,ajbbaj)
• So M either accepts both aibbaj and ajbbaj, or rejects both
• {xxR} contains ajbbaj but not aibbaj, so L(M) ≠ {xxR}

• So no DFA has L(M) = {xxR}: {xxR} is not regular

The language {xxR} is not regular for any
alphabet with at least two symbols.

Formal Language, chapter 11, slide 15

16

Outline

• 11.1 The Language {anbn}
• 11.2 The Languages {xxR}
• 11.3 Pumping
• 11.4 Pumping-Lemma Proofs
• 11.5 Strategies
• 11.6 Pumping And Finite Languages

Formal Language, chapter 11, slide 16

17

Review

• We've shown two languages non-regular:
{anbn} and {xxR}

• In both cases, the key idea was to choose a
string long enough to make any given DFA
repeat a state

• For both those proofs we just used strings of
as, and showed that ∃ i and j with i < j such
that δ*(q0,ai) = δ*(q0,aj)

Formal Language, chapter 11, slide 17

18

Multiple Repetitions
• When you've found a state that repeats once,

you can make it repeat again and again
• For example, our δ*(q0,ai) = δ*(q0,aj):

– Let r be the state in question: r = δ*(q0,ai)

– After j-i more as it repeats: r = δ*(q0,ai+(j-i))
– That little substring a(j-i) takes it from state r back to

state r
– r = δ*(q0,ai)  

 = δ*(q0,ai+(j-i))  
 = δ*(q0,ai+2(j-i))  
 = δ*(q0,ai+3(j-i))

Formal Language, chapter 11, slide 18

19

Pumping

• We say that the substring a(j-i) can be pumped
any number of times, and the DFA always
ends up in the same state

• All regular languages have an important
property involving pumping

• Any sufficiently long string in a regular
language must contain a pumpable substring

• Formally, the pumping lemma…

Formal Language, chapter 11, slide 19

20

Lemma 11.3: The Pumping Lemma
for Regular Languages

• Let M = (Q, Σ, δ, q0, F) be any DFA with L(M) = L
• Choose k = |Q|
• Consider any x, y, and z with xyz ∈ L and |y| ≥ k
• Let r be a state that repeats during the y part of xyz

– We know such a state exists because we have |y| ≥ |Q|…

For all regular languages L there exists some integer k
such that for all xyz ∈ L with |y| ≥ k, there exist uvw = y
with |v| >0, such that for all i ≥ 0, xuviwz ∈ L.

x y z

In state r here And again here

Formal Language, chapter 11, slide 20

21

Lemma 11.3: The Pumping Lemma
for Regular Languages

• Let M = (Q, Σ, δ, q0, F) be any DFA with L(M) = L
• Choose k = |Q|
• Consider any x, y, and z with xyz ∈ L and |y| ≥ k
• Let r be a state that repeats during the y part of xyz
• Choose uvw = y so that δ*(q0,xu) = δ*(q0,xuv) = r
• Now v is pumpable: for all i ≥ 0, δ*(q0,xuvi) = r…

For all regular languages L there exists some integer k
such that for all xyz ∈ L with |y| ≥ k, there exist uvw = y
with |v| >0, such that for all i ≥ 0, xuviwz ∈ L.

x z

In state r here And again here

u v w
Formal Language, chapter 11, slide 21

22

Lemma 11.3: The Pumping Lemma
for Regular Languages

• Let M = (Q, Σ, δ, q0, F) be any DFA with L(M) = L
• Choose k = |Q|
• Consider any x, y, and z with xyz ∈ L and |y| ≥ k
• Let r be a state that repeats during the y part of xyz
• Choose uvw = y so that δ*(q0,xu) = δ*(q0,xuv) = r
• Now v is pumpable: for all i ≥ 0, δ*(q0,xuv

i) = r
• Then for all i ≥ 0, δ*(q0,xuv

i
wz) = δ*(q0,xuvwz) = δ*(q0,xyz) ∈ F

• Therefore, for all i ≥ 0, xuv
i
wz ∈ L

For all regular languages L there exists some integer k
such that for all xyz ∈ L with |y| ≥ k, there exist uvw = y
with |v| >0, such that for all i ≥ 0, xuviwz ∈ L.

x zu v wv v…
Formal Language, chapter 11, slide 22

23

Pumping Lemma Structure

• Notice the alternating "for all" and "there exist" clauses:
1. ∀ L …
2. ∃ k …
3. ∀ xyz …
4. ∃ uvw …
5. ∀ i …

• Our proof showed how to construct the ∃ parts
• But that isn't part of the lemma: it's a black box
• The lemma says only that k and uvw exist

For all regular languages L there exists some integer k
such that for all xyz ∈ L with |y| ≥ k, there exist uvw = y
with |v| >0, such that for all i ≥ 0, xuviwz ∈ L.

Formal Language, chapter 11, slide 23

24

Outline

• 11.1 The Language {anbn}
• 11.2 The Languages {xxR}
• 11.3 Pumping
• 11.4 Pumping-Lemma Proofs
• 11.5 Strategies
• 11.6 Pumping And Finite Languages

Formal Language, chapter 11, slide 24

25

Pumping-Lemma Proofs

• The pumping lemma is very useful for proving
that languages are not regular

• For example, {anbn}…

Formal Language, chapter 11, slide 25

26

{anbn} Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that L = {anbn} is regular, so the pumping lemma
holds for L. Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = ak
 y = bk
 z = ε

 Now xyz = akbk ∈ L and |y| ≥ k as required.
3 Let u, v, and w be as given by the pumping lemma, so that uvw = y, |v|

> 0, and for all i ≥ 0, xuviwz ∈ L.
4 Choose i = 2. Since v contains at least one b and nothing but bs, uv2w

has more bs than uvw. So xuv2wz has more bs than as, and so
xuv2wz ∉ L.

5 By contradiction, L = {anbn} is not regular.

Formal Language, chapter 11, slide 26

27

The Game

• The alternating ∀ and ∃ clauses of the pumping lemma make
these proofs a kind of game

• The ∃ parts (k and uvw) are the pumping lemma's moves: these
values exist, but are not ours to choose

• The ∀ parts (L, xyz, and i) are our moves: the lemma holds for all
proper values, so we have free choice

• We make our moves strategically, to force a contradiction
• No matter what the pumping lemma does with its moves, we

want to end up with some xuviwz ∉ L

Formal Language, chapter 11, slide 27

28

The Pattern
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that L = {anbn} is regular, so the pumping lemma
holds for L. Let k be as given by the pumping lemma.

2.

3 Let u, v, and w be as given by the pumping lemma, so that uvw = y, |v|

> 0, and for all i ≥ 0, xuviwz ∈ L.
4  

  

5 By contradiction, L = {anbn} is not regular.

Here, you chose xyz and show that they meet the requirements,
xyz ∈ L and |y| ≥ k. Choose them so that pumping in the y part
will lead to a contradiction, a string ∉ L.

Here, you choose i, the number of times to pump, and show that
you have a contradiction: xuviwz ∉ L.

Formal Language, chapter 11, slide 28

29

{xxR} Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that L = {xxR} is regular, so the pumping lemma
holds for L. Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = akbb
 y = ak
 z = ε

 Now xyz = akbbak ∈ L and |y| ≥ k as required.
3 Let u, v, and w be as given by the pumping lemma, so that uvw = y, |v|

> 0, and for all i ≥ 0, xuviwz ∈ L.
4 Choose i = 2. Since v contains at least one a and nothing but as, uv2w

has more as than uvw. So xuv2wz has more as after the bs than
before them, and thus xuv2wz ∉ L.

5 By contradiction, L = {xxR} is not regular.

Formal Language, chapter 11, slide 29

30

Outline

• 11.1 The Language {anbn}
• 11.2 The Languages {xxR}
• 11.3 Pumping
• 11.4 Pumping-Lemma Proofs
• 11.5 Strategies
• 11.6 Pumping And Finite Languages

Formal Language, chapter 11, slide 30

31

Proof Strategy

• It all comes down to those four delicate
choices: xyz and i

• Usually, there are a number of choices that
successfully lead to a contradiction

• And, of course many others that fail
• For example: let A = {anbjan | n ≥ 0, j ≥ 1}
• We'll try a pumping-lemma proof that A is not

regular

Formal Language, chapter 11, slide 31

32

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = aaa
 y = b
 z = aaa

?

Formal Language, chapter 11, slide 32

33

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = aaa
 y = b
 z = aaa

Bad choice. The pumping lemma
requires |y| ≥ k. It never applies to fixed-
size examples. Since k is not known in
advance, y must be some string that is
constructed using k, such as ak.

Formal Language, chapter 11, slide 33

34

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = ε
 y = ak
 z = ak

?

Formal Language, chapter 11, slide 34

35

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = ε
 y = ak
 z = ak

Bad choice. The pumping lemma lemma
only applies if the string xyz ∈ A. That is
not the case here.

Formal Language, chapter 11, slide 35

36

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = an
 y = b
 z = an

?

Formal Language, chapter 11, slide 36

37

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = an
 y = b
 z = an

This is ill-formed, since the value of n is
not defined. At this point the only integer
variable that is defined is k.

Formal Language, chapter 11, slide 37

38

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = ak
 y = bk+2
 z = ak

?

Formal Language, chapter 11, slide 38

39

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = ak
 y = bk+2
 z = ak

This meets the requirements xyz ∈ A and
|y| ≥ k, but it is a bad choice because it
won't lead to a contradiction. Pumping
within the string y will change the number
of bs in the middle, but the resulting
string can still be in A.

Formal Language, chapter 11, slide 39

40

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = ak
 y = bbak
 z = ε

?

Formal Language, chapter 11, slide 40

41

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = ak
 y = bbak
 z = ε

This meets the requirements xyz ∈ A and
y| ≥ k, but it is a bad choice because it
won't lead to a contradiction. The
pumping lemma can choose any uvw = y
with |v| > 0. If it chooses u=b, v=b, and w
= ak, there will be no contradiction, since
for all i ≥ 0,  
xuviwz ∈ A.

Formal Language, chapter 11, slide 41

42

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = akb
 y = ak
 z = ε

?

Formal Language, chapter 11, slide 42

43

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = akb
 y = ak
 z = ε

Good choice. It meets the requirements
xyz ∈ A and |y| ≥ k, and it will lead to a
contradiction because pumping anywhere
in the y part will change the number of as
after the b, without changing the number
before the b.

Formal Language, chapter 11, slide 43

44

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = ε
 y = ak
 z = bak

?

Formal Language, chapter 11, slide 44

45

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = ε
 y = ak
 z = bak

An equally good choice.

Formal Language, chapter 11, slide 45

46

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular. Let k be
as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = ε
 y = ak
 z = bak

 Now xyz = akbak ∈ A and |y| ≥ k as required.
3 Let u, v, and w be as given by the pumping lemma, so that uvw = y, |v|

> 0, and for all i ≥ 0, xuviwz ∈ A.
1. Choose i = 1

 ?

Formal Language, chapter 11, slide 46

47

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular.
Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = ε
 y = ak
 z = bak

 Now xyz = akbak ∈ A and |y| ≥ k as required.
3 Let u, v, and w be as given by the pumping lemma, so that uvw

= y, |v| > 0, and for all i ≥ 0, xuviwz ∈ A.
1. Choose i = 1

Bad choice -- the only bad choice for i in
this case! When i = 1, xuviwz ∈ A, so
there is no contradiction.

Formal Language, chapter 11, slide 47

48

A Is Not Regular
1. Proof is by contradiction using the pumping lemma for regular

languages. Assume that A = {anbjan | n ≥ 0, j ≥ 1} is regular. Let k be
as given by the pumping lemma.

2. Choose x, y, and z as follows:
 x = ε
 y = ak
 z = bak

 Now xyz = akbak ∈ A and |y| ≥ k as required.
3 Let u, v, and w be as given by the pumping lemma, so that uvw = y, |v|

> 0, and for all i ≥ 0, xuviwz ∈ A.
4 Choose i = 2. Since v contains at least one a and nothing but as, uv2w

has more as than uvw. So xuv2wz has more as before the b than after
it, and thus xuv2wz ∉ A.

5 By contradiction, A is not regular.

Formal Language, chapter 11, slide 48

49

Outline

• 11.1 The Language {anbn}
• 11.2 The Languages {xxR}
• 11.3 Pumping
• 11.4 Pumping-Lemma Proofs
• 11.5 Strategies
• 11.6 Pumping And Finite Languages

Formal Language, chapter 11, slide 49

50

What About Finite Languages?

• The pumping lemma applies in a trivial way to any
finite language L

• Choose k greater than the length of the longest string
in L

• Then it is clearly true that "for all xyz ∈ L with |y| ≥ k,
…" since there are no strings in L with |y| ≥ k

• It is vacuously true
• In fact, all finite languages are regular…

For all regular languages L there exists some integer k
such that for all xyz ∈ L with |y| ≥ k, there exist uvw = y
with |v| >0, such that for all i ≥ 0, xuviwz ∈ L.

Formal Language, chapter 11, slide 50

51

Theorem 11.6

• Let A be any finite language of n strings:  
A = {x1, ..., xn}

• There is a regular expression that denotes this
language: A = L(x1+ ...+ xn)

• Or, in case n = 0, A = L(∅)
• Since A is denoted by a regular expression, A

is a regular language

All finite languages are regular.

Formal Language, chapter 11, slide 51

