Chapter Eleven: Non-Regular Languages

We have now encountered regular languages in several different places. They are the languages that can be recognized by a $\mathcal{D F A}$. They are the Canguages that can be recognized by an $\mathcal{N F A}$. They are the languages that can be denoted by a regular expression. They are the languages that can be generated by a right-linear grammar. You might begin to wonder: are there any languages that are not regular?
In this chapter, we will see that there are. There is a proof tool that is often used to prove languages non-regular. It is calfed the pumping Cemma, and it describes an important property that all regular languages have. If you can show that a given Canguage does not have this property, you can conclude that it is not a regular language.

Outline

- 11.1 The Language $\left\{a^{n} b^{n}\right\}$
- 11.2 The Languages $\left\{x x^{R}\right\}$
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

The Language $\left\{a^{n} b^{n}\right\}$

- Any number of as followed by the same number of $b s$
- Easy to give a grammar for this language:

$$
S \rightarrow a S b \mid \varepsilon
$$

- All derivations of a fully terminal string use the first production $n=0$ or more times, then the last production once: $a^{n} b^{n}$
- Is it a regular language? For example, is there an NFA for it?

Trying To Build An NFA

- We'll try working up to it
- The subset $\left\{a^{n} b^{n} \mid n \leq 0\right\}$:

- The subset $\left\{a^{n} b^{n} \mid n \leq 1\right\}$:

The Subset $\left\{a^{n} b^{n} \mid n \leq 2\right\}$

The Subset $\left\{a^{n} b^{n} \mid n \leq 3\right\}$

A Futile Effort

- For each larger value of n we added two more states
- We're using the states to count the as, then to check that the same number of $b s$ follow
- That's not going to be a successful pattern on which to build an NFA for all of $\left\{a^{n} b^{n}\right\}$
- NFA needs a fixed, finite number of states
- No fixed, finite number will be enough to count the unbounded n in $\left\{a^{n} b^{n}\right\}$
- This is not a proof that no NFA can be constructed
- But it does contain the germ of an idea for a proof...

Theorem 11.1

The language $\left\{a^{n} b^{n}\right\}$ is not regular.

- Let $M=\left(Q,\{a, b\}, \delta, q_{0}, F\right)$ be any DFA over the alphabet $\{a, b\}$; we'll show that $L(M) \neq\left\{a^{n} b^{n}\right\}$
- Given as for input, M visits a sequence of states:
$-\delta^{*}\left(q_{0}, \varepsilon\right)$, then $\delta^{*}\left(q_{0}, a\right)$, then $\delta^{*}\left(q_{0}, a a\right)$, and so on
- Since Q is finite, M eventually revisits one:
$-\exists i$ and j with $i<j$ such that $\delta^{*}\left(q_{0}, a^{i}\right)=\delta^{*}\left(q_{0}, a^{j}\right)$
- Append b^{j}, and we see that $\delta^{*}\left(q_{0}, a^{i} b^{j}\right)=\delta^{*}\left(q_{0}, a^{i} b^{j}\right)$
- So M either accepts both $a^{i} b^{i}$ and $a^{i b j}$, or rejects both
- $\left\{a^{n} b^{n}\right\}$ contains aibi but not $a^{i} b^{j}$, so $L(M) \neq\left\{a^{n} b^{n}\right\}$
- So no DFA has $L(M)=\left\{a^{n} b^{n}\right\}$: $\left\{a^{n} b^{n}\right\}$ is not regular

A Word About That Proof

- Nothing was assumed about the DFA M, except its alphabet $\{a, b\}$
- In spite of that, we were able to infer quite a lot about its behavior
- The basic insight: with a sufficiently long string we can force any DFA to repeat a state
- That's the basis of a wide variety of nonregularity proofs

Outline

- 11.1 The Language $\left\{a^{n} b^{n}\right\}$
- 11.2 The Languages $\left\{x x^{R}\right\}$
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

The Languages $\left\{x x^{R}\right\}$

- The notation x^{R} means the string x, reversed
- $\left\{x x^{R}\right\}$ is the set of strings that can be formed by taking any string in Σ^{*}, and appending the same string, reversed
- For $\Sigma=\{a, b\},\left\{x x^{R}\right\}$ includes the strings ε, $a a$, $b b$, abba, baab, aaaa, bbbb, and so on
- Another way of saying it: $\left\{x x^{R}\right\}$ is the set of even-length palindromes

A Grammar For $\left\{x x^{R} \mid x \in\{a, b\}^{*}\right\}$

$$
S \rightarrow a S a|b S b| \varepsilon
$$

- A derivation for abba:
$-S \Rightarrow a S a \Rightarrow a b S b a \Rightarrow a b b a$
- A derivation for abaaba:
$-S \Rightarrow a S a \Rightarrow a b S b a \Rightarrow a b a S a b a \Rightarrow a b a a b a$
- Every time you use one of the first two productions, you add a symbol to the end of the first half, and the same symbol to the start of the second half
- So the second half is always the reverse of the first half: $L(G)=\left\{x x^{R} \mid x \in\{a, b\}^{*}\right\}$
- But is this language regular?

Intuition

- After seeing the first example, you may already have the feeling this can't be regular
- A finite state machine would have to use states to keep track of x, then check that it is followed by a matching x^{R}
- But there is no bound on the length of x, so no fixed, finite number of states will suffice
- The formal proof is very similar to the one we used for $\left\{a^{n} b^{n}\right\} .$.

Theorem 11.2

The language $\left\{x x^{R}\right\}$ is not regular for any alphabet with at least two symbols.

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be any DFA with $|\Sigma| \geq 2$; we'll show that $L(M)$ $\neq\left\{x x^{R}\right\}$
- $\quad \Sigma$ has at least two symbols; call two of these a and b
- Given as for input, M visits a sequence of states:
- $\delta^{*}\left(q_{0}, \varepsilon\right)$, then $\delta^{*}\left(q_{0}, a\right)$, then $\delta^{*}\left(q_{0}, a a\right)$, and so on
- Since Q is finite, M eventually revisits one:
$-\exists i$ and j with $i<j$ such that $\delta^{*}\left(q_{0}, a^{i}\right)=\delta^{*}\left(q_{0}, a^{j}\right)$
- Append bbaj, and we see that $\delta^{*}\left(q_{0}, a^{\prime} b b a^{\prime}\right)=\delta^{*}\left(q_{0}, a^{\prime} b b a^{\prime}\right)$
- So M either accepts both $a^{\prime} b b a^{j}$ and $a^{\prime} b b a^{j}$, or rejects both
- $\left\{x x^{R}\right\}$ contains albbaj but not aibbaj, so $L(M) \neq\left\{x x^{R}\right\}$
- So no DFA has $L(M)=\left\{x x^{R}\right\}:\left\{x x^{R}\right\}$ is not regular

Outline

- 11.1 The Language $\left\{a^{n} b^{n}\right\}$
- 11.2 The Languages $\left\{x x^{R}\right\}$
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

Review

- We've shown two languages non-regular: $\left\{a^{n} b^{n}\right\}$ and $\left\{x x^{R}\right\}$
- In both cases, the key idea was to choose a string long enough to make any given DFA repeat a state
- For both those proofs we just used strings of as, and showed that $\exists i$ and j with $i<j$ such that $\delta^{*}\left(q_{0}, a^{i}\right)=\delta^{*}\left(q_{0}, a^{i}\right)$

Multiple Repetitions

- When you've found a state that repeats once, you can make it repeat again and again
- For example, our $\delta^{*}\left(q_{0}, a^{i}\right)=\delta^{*}\left(q_{0}, a^{j}\right)$:
- Let r be the state in question: $r=\delta^{*}\left(q_{0}, a^{i}\right)$
- After j-i more as it repeats: $r=\delta^{*}\left(q_{0}, a^{i+(j-i)}\right)$
- That little substring $a^{(j-i)}$ takes it from state r back to state r

$$
\begin{aligned}
-r & =\delta^{*}\left(q_{0}, a^{i}\right) \\
& =\delta^{*}\left(q_{0}, a^{i+(j-i)}\right) \\
& =\delta^{*}\left(q_{0}, a^{i+2(j-i)}\right) \\
& =\delta^{*}\left(q_{0}, a^{i+3(j-i)}\right)
\end{aligned}
$$

Pumping

- We say that the substring $a^{(j-i)}$ can be pumped any number of times, and the DFA always ends up in the same state
- All regular languages have an important property involving pumping
- Any sufficiently long string in a regular language must contain a pumpable substring
- Formally, the pumping lemma...

Lemma 11.3: The Pumping Lemma for Regular Languages

For all regular languages L there exists some integer k such that for all $x y z \in L$ with $|y| \geq k$, there exist $u v w=y$ with $|v|>0$, such that for all $i \geq 0, x u v^{i} w z \in L$.

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be any DFA with $L(M)=L$
- Choose $k=|Q|$
- Consider any x, y, and z with $x y z \in L$ and $|y| \geq k$
- Let r be a state that repeats during the y part of $x y z$
- We know such a state exists because we have $|y| \geq|Q| \ldots$

Lemma 11.3: The Pumping Lemma for Regular Languages

For all regular languages L there exists some integer k such that for all $x y z \in L$ with $|y| \geq k$, there exist $u v w=y$ with $|v|>0$, such that for all $i \geq 0, x u v^{i} w z \in L$.

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be any DFA with $L(M)=L$
- Choose $k=|Q|$
- Consider any x, y, and z with $x y z \in L$ and $|y| \geq k$
- Let r be a state that repeats during the y part of $x y z$
- Choose $u v w=y$ so that $\delta^{*}\left(q_{0}, x u\right)=\delta^{*}\left(q_{0}, x u v\right)=r$
- Now v is pumpable: for all $i \geq 0, \delta^{*}\left(q_{0}, x u v^{\prime}\right)=r \ldots$

Lemma 11.3: The Pumping Lemma for Regular Languages

For all regular languages L there exists some integer k such that for all $x y z \in L$ with $|y| \geq k$, there exist $u v w=y$ with $|v|>0$, such that for all $i \geq 0, x u v^{i} w z \in L$.

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be any DFA with $L(M)=L$
- Choose $k=|Q|$
- Consider any x, y, and z with $x y z \in L$ and $|y| \geq k$
- Let r be a state that repeats during the y part of $x y z$
- Choose $u v w=y$ so that $\delta^{*}\left(q_{0}, x u\right)=\delta^{*}\left(q_{0}, x u v\right)=r$
- Now v is pumpable: for all $\left.i \geq 0, \delta^{*}\left(q_{0}, x u v\right)^{i}\right)=r$
- Then for all $i \geq 0, \delta^{*}\left(q_{0}, x u v^{i} w z\right)=\delta^{*}\left(q_{0}, x u v w z\right)=\delta^{*}\left(q_{0}, x y z\right) \in F$
- Therefore, for all $i \geq 0, x u v^{\prime} w z \in L$

x	u	v	v	\cdots	v	w	z

Pumping Lemma Structure

For all regular languages L there exists some integer k such that for all $x y z \in L$ with $|y| \geq k$, there exist $u v w=y$ with $|v|>0$, such that for all $i \geq 0, x u v^{i} w z \in L$.

- Notice the alternating "for all" and "there exist" clauses:

1. $\forall L \ldots$
2. $\exists k \ldots$
3. $\forall x y z \ldots$
4. $\exists u \vee w \ldots$
5. $\forall i \ldots$

- Our proof showed how to construct the \exists parts
- But that isn't part of the lemma: it's a black box
- The lemma says only that k and $u v w$ exist

Outline

- 11.1 The Language $\left\{a^{n} b^{n}\right\}$
- 11.2 The Languages $\left\{x x^{R}\right\}$
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

Pumping-Lemma Proofs

- The pumping lemma is very useful for proving that languages are not regular
- For example, $\left\{a^{n} b^{n}\right\} .$.

$\left\{a^{n} b^{n}\right\}$ Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $L=\left\{a^{n} b^{n}\right\}$ is regular, so the pumping lemma holds for L. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=a^{k} \\
& y=b^{k} \\
& z=\varepsilon
\end{aligned}
$$

Now $x y z=a^{k} b^{k} \in L$ and $|y| \geq k$ as required.
3 Let u, v, and w be as given by the pumping lemma, so that $u v w=y,|v|$ >0, and for all $i \geq 0, x u v^{i} w z \in L$.
4 Choose $i=2$. Since v contains at least one b and nothing but $b s, u v^{2} w$ has more bs than $u v w$. So $x u v^{2} w z$ has more $b s$ than as, and so $x u v^{2} w z \notin L$.
5 By contradiction, $L=\left\{a^{n} b^{n}\right\}$ is not regular.

The Game

- The alternating \forall and \exists clauses of the pumping lemma make these proofs a kind of game
- The \exists parts (k and $u v w$) are the pumping lemma's moves: these values exist, but are not ours to choose
- The \forall parts ($L, x y z$, and i) are our moves: the lemma holds for all proper values, so we have free choice
- We make our moves strategically, to force a contradiction
- No matter what the pumping lemma does with its moves, we want to end up with some xuviwz $\notin L$

The Pattern

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $L=\left\{a^{n} b^{n}\right\}$ is regular, so the pumping lemma holds for L. Let k be as given by the pumping lemma.
2.

Here, you chose $x y z$ and show that they meet the requirements, $x y z \in L$ and $|y| \geq k$. Choose them so that pumping in the y part will lead to a contradiction, a string $\notin L$.

3 Let u, v, and w be as given by the pumping lemma, so that $u v w=y,|v|$ >0, and for all $i \geq 0, x u v^{i} w z \in L$.

Here, you choose i, the number of times to pump, and show that you have a contradiction: xuviwz $\notin L$.
5 By contradiction, $L=\left\{a^{n} b^{n}\right\}$ is not regular.

$\left\{x x^{R}\right\}$ Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $L=\left\{x x^{R}\right\}$ is regular, so the pumping lemma holds for L. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=a^{k} b b \\
& y=a^{k} \\
& z=\varepsilon
\end{aligned}
$$

Now $x y z=a^{k} b b a^{k} \in L$ and $|y| \geq k$ as required.
3 Let u, v, and w be as given by the pumping lemma, so that $u v w=y,|v|$ >0, and for all $i \geq 0, x u v^{i} w z \in L$.
4 Choose $i=2$. Since v contains at least one a and nothing but as, $u v^{2} w$ has more as than $u v w$. So $x u v^{2} w z$ has more as after the $b s$ than before them, and thus $x u v^{2} w z \notin L$.
5 By contradiction, $L=\left\{x x^{R}\right\}$ is not regular.

Outline

- 11.1 The Language $\left\{a^{n} b^{n}\right\}$
- 11.2 The Languages $\left\{x x^{R}\right\}$
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

Proof Strategy

- It all comes down to those four delicate choices: xyz and i
- Usually, there are a number of choices that successfully lead to a contradiction
- And, of course many others that fail
- For example: let $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$
- We'll try a pumping-lemma proof that A is not regular

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=a a a \\
& y=b \\
& z=a a a
\end{aligned}
$$

$?$

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=a a a \\
& y=b \\
& z=a a a
\end{aligned}
$$

Bad choice. The pumping lemma requires $|y| \geq k$. It never applies to fixedsize examples. Since k is not known in advance, y must be some string that is constructed using k, such as a^{k}.

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=\varepsilon \\
& y=a^{k} \\
& z=a^{k}
\end{aligned}
$$

$?$

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=\varepsilon \\
& y=a^{k} \\
& z=a^{k}
\end{aligned}
$$

Bad choice. The pumping lemma lemma only applies if the string $x y z \in A$. That is not the case here.

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=a^{n} \\
& y=b \\
& z=a^{n}
\end{aligned}
$$

$?$

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=a^{n} \\
& y=b \\
& z=a^{n}
\end{aligned}
$$

This is ill-formed, since the value of n is not defined. At this point the only integer variable that is defined is k.

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=a^{k} \\
& y=b^{k+2} \\
& z=a^{k}
\end{aligned}
$$

$?$

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=a^{k} \\
& y=b^{k+2} \\
& z=a^{k}
\end{aligned}
$$

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=a^{k} \\
& y=b b a^{k} \\
& z=\varepsilon
\end{aligned}
$$

$?$

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=a^{k} \\
& y=b b a^{k} \\
& z=\varepsilon
\end{aligned}
$$

This meets the requirements $x y z \in A$ and
$y \mid \geq k$, but it is a bad choice because it
won't lead to a contradiction. The
pumping lemma can choose any $u v w=y$
with $|v|>0$. If it chooses $u=b, v=b$, and w
$=a^{k}$, there will be no contradiction, since
for all $i \geq 0$,
$x u v^{i} w z \in A$.

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=a^{k} b \\
& y=a^{k} \\
& z=\varepsilon
\end{aligned}
$$

$?$

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=a^{k} b \\
& y=a^{k} \\
& z=\varepsilon
\end{aligned}
$$

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=\varepsilon \\
& y=a^{k} \\
& z=b a^{k}
\end{aligned}
$$

$?$

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{array}{ll}
x=\varepsilon & \\
y=a^{k} & \text { An equally good choice. } \\
z=b a^{k} &
\end{array}
$$

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{j} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=\varepsilon \\
& y=a^{k} \\
& z=b a^{k}
\end{aligned}
$$

Now $x y z=a^{k} b a^{k} \in A$ and $|y| \geq k$ as required.
3 Let u, v, and w be as given by the pumping lemma, so that $u v w=y,|v|$ >0, and for all $i \geq 0, x u v^{i} w z \in A$.

1. Choose $i=1$
?

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{i} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=\varepsilon \\
& y=a^{k} \\
& z=b a^{k}
\end{aligned}
$$

Now $x y z=a^{k} b a^{k} \in A$ and $|y| \geq k$ as required.
3 Let u, v, and w be as given by the pumping lemma, so that $u v w$ $=y,|v|>0$, and for all $i \geq 0$, xuviwz $\in A$.

1. Choose $i=1$

> Bad choice -- the only bad choice for i in this case! When $i=1$, xuviwz $\in A$, so there is no contradiction.

A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A=\left\{a^{n} b^{i} a^{n} \mid n \geq 0, j \geq 1\right\}$ is regular. Let k be as given by the pumping lemma.
2. Choose x, y, and z as follows:

$$
\begin{aligned}
& x=\varepsilon \\
& y=a^{k} \\
& z=b a^{k}
\end{aligned}
$$

Now $x y z=a^{k} b a^{k} \in A$ and $|y| \geq k$ as required.
3 Let u, v, and w be as given by the pumping lemma, so that $u v w=y,|v|$ >0, and for all $i \geq 0, x u v i w z \in A$.
4 Choose $i=2$. Since v contains at least one a and nothing but as, $u v^{2} w$ has more as than $u v w$. So $x u v^{2} w z$ has more as before the b than after it, and thus $x u v^{2} w z \notin A$.
5 By contradiction, A is not regular.

Outline

- 11.1 The Language $\left\{a^{n} b^{n}\right\}$
- 11.2 The Languages $\left\{x x^{R}\right\}$
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

What About Finite Languages?

For all regular languages L there exists some integer k such that for all $x y z \in L$ with $|y| \geq k$, there exist $u v w=y$ with $|v|>0$, such that for all $i \geq 0$, xuviwz $\in L$.

- The pumping lemma applies in a trivial way to any finite language L
- Choose k greater than the length of the longest string in L
- Then it is clearly true that "for all $x y z \in L$ with $|y| \geq k$, ..." since there are no strings in L with $|y| \geq k$
- It is vacuously true
- In fact, all finite languages are regular...

Theorem 11.6

All finite languages are regular.

- Let A be any finite language of n strings: $A=\left\{x_{1}, \ldots, x_{n}\right\}$
- There is a regular expression that denotes this language: $A=L\left(x_{1}+\ldots+x_{n}\right)$
- Or, in case $n=0, A=L(\varnothing)$
- Since A is denoted by a regular expression, A is a regular language

