Chapter Eleven: Non-Regular Languages
We have now encountered regular languages in several different places. They are the languages that can be recognized by a DFA. They are the languages that can be recognized by an NFA. They are the languages that can be denoted by a regular expression. They are the languages that can be generated by a right-linear grammar. You might begin to wonder: are there any languages that are not regular?

In this chapter, we will see that there are. There is a proof tool that is often used to prove languages non-regular. It is called the pumping lemma, and it describes an important property that all regular languages have. If you can show that a given language does not have this property, you can conclude that it is not a regular language.
Outline

• 11.1 The Language \(\{a^n b^n\} \)
• 11.2 The Languages \(\{xx^R\} \)
• 11.3 Pumping
• 11.4 Pumping-Lemma Proofs
• 11.5 Strategies
• 11.6 Pumping And Finite Languages
The Language $\{a^n b^n\}$

- Any number of as followed by the same number of bs
- Easy to give a grammar for this language:

 \[
 S \rightarrow aSb \mid \varepsilon
 \]

- All derivations of a fully terminal string use the first production $n=0$ or more times, then the last production once: $a^n b^n$

- Is it a regular language? For example, is there an NFA for it?
Trying To Build An NFA

• We'll try working up to it
• The subset \(\{ a^n b^n \mid n \leq 0 \} \):

• The subset \(\{ a^n b^n \mid n \leq 1 \} \):
The Subset \(\{ a^n b^n \mid n \leq 2 \} \)
The Subset $\{a^n b^n \mid n \leq 3\}$
A Futile Effort

• For each larger value of \(n \) we added two more states
• We're using the states to count the \(a \)s, then to check that the same number of \(b \)s follow
• That's not going to be a successful pattern on which to build an NFA for all of \(\{a^n b^n\} \)
 – NFA needs a fixed, finite number of states
 – No fixed, finite number will be enough to count the unbounded \(n \) in \(\{a^n b^n\} \)
• This is not a proof that no NFA can be constructed
• But it does contain the germ of an idea for a proof…

Formal Language, chapter 11, slide 8
Theorem 11.1

The language \(\{a^n b^n\} \) is not regular.

- Let \(M = (Q, \{a,b\}, \delta, q_0, F) \) be any DFA over the alphabet \(\{a,b\} \); we'll show that \(L(M) \neq \{a^n b^n\} \)
- Given as for input, \(M \) visits a sequence of states:
 - \(\delta^*(q_0,\varepsilon) \), then \(\delta^*(q_0,a) \), then \(\delta^*(q_0,aa) \), and so on
- Since \(Q \) is finite, \(M \) eventually revisits one:
 - \(\exists i \) and \(j \) with \(i < j \) such that \(\delta^*(q_0,a^i) = \delta^*(q_0,a^j) \)
- Append \(b^j \), and we see that \(\delta^*(q_0,a^i b^j) = \delta^*(q_0,a^i b^j) \)
- So \(M \) either accepts both \(a^i b^j \) and \(a^j b^i \), or rejects both
- \(\{a^n b^n\} \) contains \(a^i b^j \) but not \(a^j b^i \), so \(L(M) \neq \{a^n b^n\} \)
- So no DFA has \(L(M) = \{a^n b^n\} \): \(\{a^n b^n\} \) is not regular

Formal Language, chapter 11, slide 9
A Word About That Proof

• Nothing was assumed about the DFA M, except its alphabet $\{a,b\}$
• In spite of that, we were able to infer quite a lot about its behavior
• The basic insight: with a sufficiently long string we can force any DFA to repeat a state
• That's the basis of a wide variety of non-regularity proofs
Outline

• 11.1 The Language \(\{a^n b^n\} \)
• 11.2 The Languages \(\{xx^R\} \)
• 11.3 Pumping
• 11.4 Pumping-Lemma Proofs
• 11.5 Strategies
• 11.6 Pumping And Finite Languages
The Languages \(\{xx^R\}\)

- The notation \(x^R\) means the string \(x\), reversed
- \(\{xx^R\}\) is the set of strings that can be formed by taking any string in \(\Sigma^*\), and appending the same string, reversed
- For \(\Sigma = \{a,b\}\), \(\{xx^R\}\) includes the strings \(\epsilon, aa, bb, abba, baab, aaaa, bbbb\), and so on
- Another way of saying it: \(\{xx^R\}\) is the set of even-length palindromes
A Grammar For \(\{xx^R \mid x \in \{a,b\}^*\} \)

\[S \rightarrow aSa \mid bSb \mid \varepsilon \]

- A derivation for \(abba \):
 - \(S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba \)
- A derivation for \(abaaba \):
 - \(S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaba \)
- Every time you use one of the first two productions, you add a symbol to the end of the first half, and the same symbol to the start of the second half
- So the second half is always the reverse of the first half: \(L(G) = \{xx^R \mid x \in \{a,b\}^*\} \)
- But is this language regular?
Intuition

• After seeing the first example, you may already have the feeling this can't be regular
 – A finite state machine would have to use states to keep track of x, then check that it is followed by a matching x^R
 – But there is no bound on the length of x, so no fixed, finite number of states will suffice

• The formal proof is very similar to the one we used for $\{a^n b^n\}$...
Theorem 11.2

The language \(\{xx^R\} \) is not regular for any alphabet with at least two symbols.

- Let \(M = (Q, \Sigma, \delta, q_0, F) \) be any DFA with \(|\Sigma| \geq 2\); we'll show that \(L(M) \neq \{xx^R\} \)
- \(\Sigma \) has at least two symbols; call two of these \(a \) and \(b \)
- Given as for input, \(M \) visits a sequence of states:
 - \(\delta^*(q_0,\varepsilon) \), then \(\delta^*(q_0,a) \), then \(\delta^*(q_0,aa) \), and so on
- Since \(Q \) is finite, \(M \) eventually revisits one:
 - \(\exists i \) and \(j \) with \(i < j \) such that \(\delta^*(q_0,a^i) = \delta^*(q_0,a^j) \)
- Append \(bbai^j \), and we see that \(\delta^*(q_0,a^i bbai^j) = \delta^*(q_0,a^j bbai^j) \)
- So \(M \) either accepts both \(bbai^i \) and \(bbai^j \), or rejects both
- \(\{xx^R\} \) contains \(bbai^i \) but not \(bbai^j \), so \(L(M) \neq \{xx^R\} \)
- So no DFA has \(L(M) = \{xx^R\} \): \(\{xx^R\} \) is not regular

Formal Language, chapter 11, slide 15
Outline

• 11.1 The Language \(\{a^n b^n\} \)
• 11.2 The Languages \(\{xx^R\} \)
• 11.3 Pumping
• 11.4 Pumping-Lemma Proofs
• 11.5 Strategies
• 11.6 Pumping And Finite Languages
Review

• We've shown two languages non-regular: \(\{a^n b^n\} \) and \(\{xx^R\} \)

• In both cases, the key idea was to choose a string long enough to make any given DFA repeat a state

• For both those proofs we just used strings of \(a \)s, and showed that \(\exists \ i \) and \(j \) with \(i < j \) such that \(\delta^*(q_0,a^i) = \delta^*(q_0,a^j) \)
Multiple Repetitions

• When you've found a state that repeats once, you can make it repeat again and again
• For example, our $\delta^*(q_0, a^i) = \delta^*(q_0, a^j)$:
 – Let r be the state in question: $r = \delta^*(q_0, a^i)$
 – After $j-i$ more as it repeats: $r = \delta^*(q_0, a^{i+(j-i)})$
 – That little substring $a^{(j-i)}$ takes it from state r back to state r

\[
\begin{align*}
 r &= \delta^*(q_0, a^i) \\
 &= \delta^*(q_0, a^{i+(j-i)}) \\
 &= \delta^*(q_0, a^{i+2(j-i)}) \\
 &= \delta^*(q_0, a^{i+3(j-i)})
\end{align*}
\]
Pumping

• We say that the substring $a^{(j-i)}$ can be *pumped* any number of times, and the DFA always ends up in the same state

• All regular languages have an important property involving pumping

• Any sufficiently long string in a regular language must contain a pumpable substring

• Formally, the pumping lemma…
Lemma 11.3: The Pumping Lemma for Regular Languages

For all regular languages L there exists some integer k such that for all $xyz \in L$ with $|y| \geq k$, there exist $uvw = y$ with $|v| > 0$, such that for all $i \geq 0$, $xuv^i wz \in L$.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be any DFA with $L(M) = L$
- Choose $k = |Q|$
- Consider any x, y, and z with $xyz \in L$ and $|y| \geq k$
- Let r be a state that repeats during the y part of xyz
 - We know such a state exists because we have $|y| \geq |Q|$...

In state r here
And again here
Lemma 11.3: The Pumping Lemma for Regular Languages

For all regular languages L there exists some integer k such that for all $xyz \in L$ with $|y| \geq k$, there exist $uvw = y$ with $|v| > 0$, such that for all $i \geq 0$, $xuv^iwz \in L$.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be any DFA with $L(M) = L$
- Choose $k = |Q|
- Consider any x, y, z with $xyz \in L$ and $|y| \geq k$
- Let r be a state that repeats during the y part of xyz
- Choose $uvw = y$ so that $\delta^*(q_0, xu) = \delta^*(q_0, xuv) = r$
- Now v is pumpable: for all $i \geq 0$, $\delta^*(q_0, xuv^i) = r$...

In state r here

And again here
Lemma 11.3: The Pumping Lemma for Regular Languages

For all regular languages \(L \) there exists some integer \(k \) such that for all \(xyz \in L \) with \(|y| \geq k \), there exist \(uvw = y \) with \(|v| > 0 \), such that for all \(i \geq 0 \), \(xuv^i wz \in L \).

- Let \(M = (Q, \Sigma, \delta, q_0, F) \) be any DFA with \(L(M) = L \)
- Choose \(k = |Q| \)
- Consider any \(x, y, \) and \(z \) with \(xyz \in L \) and \(|y| \geq k \)
- Let \(r \) be a state that repeats during the \(y \) part of \(xyz \)
- Choose \(uvw = y \) so that \(\delta^*(q_0, xu) = \delta^*(q_0, xuv) = r \)
- Now \(v \) is pumpable: for all \(i \geq 0 \), \(\delta^*(q_0, xuv^i) = r \)
- Then for all \(i \geq 0 \), \(\delta^*(q_0, xuv^i wz) = \delta^*(q_0, xuvwz) = \delta^*(q_0, xyz) \in F \)
- Therefore, for all \(i \geq 0 \), \(xuv^i wz \in L \)
Pumping Lemma Structure

For all regular languages \(L \) there exists some integer \(k \) such that for all \(xyz \in L \) with \(|y| \geq k \), there exist \(uvw = y \) with \(|v| > 0 \), such that for all \(i \geq 0 \), \(xuv^i wz \in L \).

- Notice the alternating "for all" and "there exist" clauses:
 1. \(\forall L \) ...
 2. \(\exists k \) ...
 3. \(\forall xyz \) ...
 4. \(\exists uvw \) ...
 5. \(\forall i \) ...
- Our proof showed how to construct the \(\exists \) parts
- But that isn't part of the lemma: it's a black box
- The lemma says only that \(k \) and \(uvw \) exist
Outline

• 11.1 The Language \(a^n b^n\)
• 11.2 The Languages \(xx^R\)
• 11.3 Pumping
• 11.4 Pumping-Lemma Proofs
• 11.5 Strategies
• 11.6 Pumping And Finite Languages
Pumping-Lemma Proofs

• The pumping lemma is very useful for proving that languages are not regular
• For example, \{a^nb^n\}…
\{a^n b^n\} Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that \(L = \{a^n b^n\} \) is regular, so the pumping lemma holds for \(L \). Let \(k \) be as given by the pumping lemma.

2. Choose \(x, y, \) and \(z \) as follows:
 \[x = a^k \]
 \[y = b^k \]
 \[z = \epsilon \]
 Now \(xyz = a^k b^k \in L \) and \(|y| \geq k \) as required.

3. Let \(u, v, \) and \(w \) be as given by the pumping lemma, so that \(uvw = y, |v| > 0 \), and for all \(i \geq 0, xuv^iwz \in L \).

4. Choose \(i = 2 \). Since \(v \) contains at least one \(b \) and nothing but \(bs \), \(uv^2w \) has more \(bs \) than \(uvw \). So \(xuv^2wz \) has more \(bs \) than \(as \), and so \(xuv^2wz \notin L \).

5. By contradiction, \(L = \{a^n b^n\} \) is not regular.
The Game

- The alternating ∀ and ∃ clauses of the pumping lemma make these proofs a kind of game.
- The ∃ parts \((k\text{ and }uvw)\) are the pumping lemma's moves: these values exist, but are not ours to choose.
- The ∀ parts \((L, xyz, \text{ and } i)\) are our moves: the lemma holds for all proper values, so we have free choice.
- We make our moves strategically, to force a contradiction.
- No matter what the pumping lemma does with its moves, we want to end up with some \(xuv^iwz \notin L\).
The Pattern

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $L = \{a^n b^n\}$ is regular, so the pumping lemma holds for L. Let k be as given by the pumping lemma.

2. Here, you chose xyz and show that they meet the requirements, $xyz \in L$ and $|y| \geq k$. Choose them so that pumping in the y part will lead to a contradiction, a string $\not\in L$.

3. Let u, v, and w be as given by the pumping lemma, so that $uvw = y$, $|v| > 0$, and for all $i \geq 0$, $xuv^i wz \in L$.

4. Here, you choose i, the number of times to pump, and show that you have a contradiction: $xuv^i wz \not\in L$.

5. By contradiction, $L = \{a^n b^n\}$ is not regular.
\{xx^R\} Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $L = \{xx^R\}$ is regular, so the pumping lemma holds for L. Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 \[
x = a^kbb

y = a^k
 \]
 \[
z = \varepsilon
 \]
 Now $xyz = a^kbb_a^k \in L$ and $|y| \geq k$ as required.

3. Let u, v, and w be as given by the pumping lemma, so that $uvw = y$, $|v| > 0$, and for all $i \geq 0$, $xuv^iwz \in L$.

4. Choose $i = 2$. Since v contains at least one a and nothing but as, uvw^2w has more as than uvw. So xuv^2wz has more as after the bs than before them, and thus $xuv^2wz \notin L$.

5. By contradiction, $L = \{xx^R\}$ is not regular.
Outline

• 11.1 The Language \(\{a^n b^n\} \)
• 11.2 The Languages \(\{xx^R\} \)
• 11.3 Pumping
• 11.4 Pumping-Lemma Proofs
• 11.5 Strategies
• 11.6 Pumping And Finite Languages
Proof Strategy

• It all comes down to those four delicate choices: xyz and i
• Usually, there are a number of choices that successfully lead to a contradiction
• And, of course many others that fail
• For example: let $A = \{a^n b^i a^n \mid n \geq 0, j \geq 1\}$
• We'll try a pumping-lemma proof that A is not regular
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n | n \geq 0, j \geq 1\}$ is regular. Let k be as given by the pumping lemma.

2. Choose $x, y, \text{ and } z$ as follows:

 \[x = a a a \]

 \[y = b \]

 \[z = a a a \]

?
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \geq 0, j \geq 1\}$ is regular. Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:

 $x = aaa$
 $y = b$
 $z = aaa$

 Bad choice. The pumping lemma requires $|y| \geq k$. It never applies to fixed-size examples. Since k is not known in advance, y must be some string that is constructed using k, such as a^k.

Formal Language, chapter 11, slide 33
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \geq 0, j \geq 1\}$ is regular. Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:

 $x = \varepsilon$

 $y = a^k$

 $z = a^k$

 ?
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \geq 0, j \geq 1\}$ is regular. Let k be as given by the pumping lemma.

2. Choose $x, y,$ and z as follows:
 - $x = \epsilon$
 - $y = a^k$
 - $z = a^k$

 Bad choice. The pumping lemma lemma only applies if the string $xyz \in A$. That is not the case here.
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \geq 0, j \geq 1\}$ is regular. Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:

 $x = a^n$
 $y = b$
 $z = a^n$

?
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that \(A = \{a^n b^j a^n \mid n \geq 0, j \geq 1\} \) is regular. Let \(k \) be as given by the pumping lemma.

2. Choose \(x, y, \) and \(z \) as follows:
 \[x = a^n \]
 \[y = b \]
 \[z = a^n \]
 This is ill-formed, since the value of \(n \) is not defined. At this point the only integer variable that is defined is \(k \).
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \geq 0, j \geq 1\}$ is regular. Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 \[
 \begin{align*}
 x &= a^k \\
 y &= b^{k+2} \\
 z &= a^k
 \end{align*}
 \]
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \geq 0, j \geq 1\}$ is regular. Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:

 \begin{align*}
 x &= a^k \\
 y &= b^{k+2} \\
 z &= a^k
 \end{align*}

 This meets the requirements $xyz \in A$ and $|y| \geq k$, but it is a bad choice because it won't lead to a contradiction. Pumping within the string y will change the number of bs in the middle, but the resulting string can still be in A.

Formal Language, chapter 11, slide 39
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \geq 0, j \geq 1\}$ is regular. Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 \[
 x = a^k \\
 y = bba^k \\
 z = \varepsilon
 \]

?
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that \(A = \{a^n b^j a^n \mid n \geq 0, j \geq 1\} \) is regular. Let \(k \) be as given by the pumping lemma.

2. Choose \(x, y, \) and \(z \) as follows:
 \[
 \begin{align*}
 x &= a^k \\
 y &= bba^k \\
 z &= \varepsilon
 \end{align*}
 \]

 This meets the requirements \(xyz \in A \) and \(|y| \geq k \), but it is a bad choice because it won't lead to a contradiction. The pumping lemma can choose any \(uvw = y \) with \(|v| > 0 \). If it chooses \(u=b, v=b, \) and \(w = a^k \), there will be no contradiction, since for all \(i \geq 0 \), \(xuv^i wz \in A \).
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^nb^ja^n \mid n \geq 0, j \geq 1\}$ is regular. Let k be as given by the pumping lemma.

2. Choose $x, y, \text{ and } z$ as follows:

 $x = a^kb$

 $y = a^k$

 $z = \epsilon$

?
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \geq 0, j \geq 1\}$ is regular. Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:
 \begin{align*}
 x &= a^k b \\
 y &= a^k \\
 z &= \varepsilon
 \end{align*}

 Good choice. It meets the requirements $xyz \in A$ and $|y| \geq k$, and it will lead to a contradiction because pumping anywhere in the y part will change the number of as after the b, without changing the number before the b.

Formal Language, chapter 11, slide 43
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \geq 0, j \geq 1\}$ is regular. Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:

 $$x = \varepsilon$$
 $$y = a^k$$
 $$z = b a^k$$

 ?
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that \(A = \{a^n b^j a^n \mid n \geq 0, j \geq 1\} \) is regular. Let \(k \) be as given by the pumping lemma.

2. Choose \(x, y, \) and \(z \) as follows:
 \[
 x = \varepsilon \\
 y = a^k \\
 z = b a^k
 \]

An equally good choice.
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that \(A = \{a^n b^j a^n \mid n \geq 0, j \geq 1 \} \) is regular. Let \(k \) be as given by the pumping lemma.

2. Choose \(x, y, \) and \(z \) as follows:
 \[
 x = \epsilon \\
y = a^k \\
z = b a^k
 \]
 Now \(xyz = a^k b a^k \in A \) and \(|y| \geq k \) as required.

3. Let \(u, v, \) and \(w \) be as given by the pumping lemma, so that \(uvw = y, |v| > 0, \) and for all \(i \geq 0, xuv^i wz \in A. \)

1. Choose \(i = 1 \)
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \geq 0, j \geq 1\}$ is regular. Let k be as given by the pumping lemma.

2. Choose $x, y,$ and z as follows:

 $x = \varepsilon$

 $y = a^k$

 $z = ba^k$

 Now $xyz = a^k ba^k \in A$ and $|y| \geq k$ as required.

3. Let $u, v,$ and w be as given by the pumping lemma, so that $uvw = y, |v| > 0,$ and for all $i \geq 0,$ $xuv^i w z \in A.$

1. Choose $i = 1$

 Bad choice -- the only bad choice for i in this case! When $i = 1,$ $xuv^1 w z \in A,$ so there is no contradiction.
A Is Not Regular

1. Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^nb^j|n \geq 0, j \geq 1\}$ is regular. Let k be as given by the pumping lemma.

2. Choose x, y, and z as follows:

 \begin{align*}
 x &= \varepsilon \\
 y &= a^k \\
 z &= ba^k
 \end{align*}

 Now $xyz = a^kba^k \in A$ and $|y| \geq k$ as required.

3. Let u, v, and w be as given by the pumping lemma, so that $uvw = y$, $|v| > 0$, and for all $i \geq 0$, $xuv^iwz \in A$.

4. Choose $i = 2$. Since v contains at least one a and nothing but as, uv^2w has more as than uvw. So xuv^2wz has more as before the b than after it, and thus $xuv^2wz \notin A$.

5. By contradiction, A is not regular.
Outline

• 11.1 The Language $\{a^n b^n\}$
• 11.2 The Languages $\{xx^R\}$
• 11.3 Pumping
• 11.4 Pumping-Lemma Proofs
• 11.5 Strategies
• 11.6 Pumping And Finite Languages
What About Finite Languages?

For all regular languages L there exists some integer k such that for all $xyz \in L$ with $|y| \geq k$, there exist $uvw = y$ with $|v| > 0$, such that for all $i \geq 0$, $xuv^iwz \in L$.

- The pumping lemma applies in a trivial way to any finite language L
- Choose k greater than the length of the longest string in L
- Then it is clearly true that "for all $xyz \in L$ with $|y| \geq k$, …" since there are no strings in L with $|y| \geq k$
- It is vacuously true
- In fact, all finite languages are regular…
Theorem 11.6

All finite languages are regular.

• Let A be any finite language of n strings: $A = \{x_1, \ldots, x_n\}$
• There is a regular expression that denotes this language: $A = L(x_1 + \ldots + x_n)$
• Or, in case $n = 0$, $A = L(\emptyset)$
• Since A is denoted by a regular expression, A is a regular language