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Chapter Twelve: 
Context-Free Languages
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We defined the right-linear grammars by giving a simple restriction on 
the form of each production.  By relaxing that restriction a bit, we get 

a broader class of grammars: the context-free grammars.  These 
grammars generate the context-free languages, which include all the 

regular languages along with many that are not regular.

Formal Language, chapter 12, slide 2



3

Outline

• 12.1 Context-Free Grammars and Languages 
• 12.2 Writing CFGs 
• 12.3 CFG Applications: BNF 
• 12.4 Parse Trees 
• 12.5 Ambiguity 
• 12.6 EBNF

Formal Language, chapter 12, slide 3



4

Examples

• We've proved that these languages are not 
regular, yet they have grammars 
– {anbn} 

– {xxR | x ∈ {a,b}*} 

– {anbjan | n ≥ 0, j ≥ 1}  

• Although not right-linear, these grammars still 
follow a rather restricted form…

S → aSb | ε

S → aSa | bSb | ε

S → aSa | R 
R → bR | b
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Context-Free Grammars

• A context-free grammar (CFG) is one in which 
every production has a single nonterminal 
symbol on the left-hand side 

• A production like R → y is permitted 
– It says that R can be replaced with y, regardless of 

the context of symbols around R in the string 
• One like uRz → uyz is not permitted 

– That would be context-sensitive: it says that R can 
be replaced with y only in a specific context
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Context-Free Languages

• A context-free language (CFL) is one that is 
L(G) for some CFG G 

• Every regular language is a CFL 
– Every regular language has a right-linear grammar 
– Every right-linear grammar is a CFG 

• But not every CFL is regular 
– {anbn} 
– {xxR | x ∈ {a,b}*} 
– {anbjan | n ≥ 0, j ≥ 1}
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Language Classes So Far

 

regular 
languages 

CFLs 

L(a*b*) 

{anbn} 
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Writing CFGs
• Programming: 

– A program is a finite, structured, mechanical thing that specifies a 
potentially infinite collection of runtime behaviors 

– You have to imagine how the code you are crafting will unfold when 
it executes 

• Writing grammars: 
– A grammar is a finite, structured, mechanical thing that specifies a 

potentially infinite language 
– You have to imagine how the productions you are crafting will unfold 

in the derivations of terminal strings 
• Programming and grammar-writing use some of the same mental 

muscles 
• Here follow some techniques and examples…
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Regular Languages

• If the language is regular, we already have a 
technique for constructing a CFG 
– Start with an NFA 
– Convert to a right-linear grammar using the 

construction from chapter 10
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Example
L = {x ∈ {0,1}* | the number of 0s in x is divisible by 3}

S → 1S | 0T | ε 
T → 1T | 0U  
U → 1U | 0S

 

S U 0 

0 

1 

T 0 

1 1 
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Example

• The conversion from NFA to grammar always works 
• But it does not always produce a pretty grammar 
• It may be possible to design a smaller or otherwise more 

readable CFG manually:

L = {x ∈ {0,1}* | the number of 0s in x is divisible by 3}

S → 1S | 0T | ε 
T → 1T | 0U  
U → 1U | 0S

S → T0T0T0S | T 
T → 1T | ε

Formal Language, chapter 12, slide 12
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Balanced Pairs

• CFLs often seem to involve balanced pairs 
– {anbn}: every a paired with b on the other side 
– {xxR | x ∈ {a,b}*}: each symbol in x paired with its 

mirror image in xR 
– {anbjan | n ≥ 0, j ≥ 1}: each a on the left paired with 

one on the right 
• To get matching pairs, use a recursive 

production of the form R → xRy 
• This generates any number of xs, each of 

which is matched with a y on the other side
Formal Language, chapter 12, slide 13
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Examples

• We've seen these before: 
– {anbn} 

– {xxR | x ∈ {a,b}*} 

– {anbjan | n ≥ 0, j ≥ 1} 

• Notice that they all use the R → xRy trick 

S → aSb | ε

S → aSa | bSb | ε

S → aSa | R 
R → bR | b
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S → aSbbb | ε

S → XSY | ε
X → a | b 
Y → c | d

Examples

• {anb3n} 
– Each a on the left can be paired with three bs on the right 
– That gives 

• {xy | x ∈ {a,b}*, y ∈ {c,d}*, and |x| = |y|} 
– Each symbol on the left (either a or b) can be paired with one on the 

right (either c or d) 
– That gives
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Concatenations
• A divide-and-conquer approach is often helpful  
• For example, L = {anbncmdm} 

– We can make grammars for {anbn} and {cmdm}: 

– Now every string in L consists of a string from the first followed by a 
string from the second 

– So combine the two grammars and add a new start symbol:

S1 → aS1b | ε S2 → cS2d | ε

S → S1S2  
S1 → aS1b | 
εS2 → cS2d | ε
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Concatenations, In General

• Sometimes a CFL L can be thought of as the 
concatenation of two languages L1 and L2 
– That is, L = L1L2 = {xy | x ∈ L1 and y ∈ L2} 

• Then you can write a CFG for L by combining 
separate CFGs for L1 and L2 
– Be careful to keep the two sets of nonterminals separate, so 

no nonterminal is used in both 
– In particular, use two separate start symbols S1 and S2 

• The grammar for L consists of all the productions from 
the two sub-grammars, plus a new start symbol S with 
the production S → S1S2
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Unions, In General

• Sometimes a CFL L can be thought of as the union of 
two languages L = L1 ∪ L2 

• Then you can write a CFG for L by combining 
separate CFGs for L1 and L2 
– Be careful to keep the two sets of nonterminals separate, so 

no nonterminal is used in both 
– In particular, use two separate start symbols S1 and S2 

• The grammar for L consists of all the productions from 
the two sub-grammars, plus a new start symbol S with 
the production S → S1 | S2
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Example

• This can be thought of as a union: L = L1 ∪ L2 

– L1 = {xxR | x ∈ {a,b}*} 

– L2 = {z ∈ {a,b}* |  |z| is odd} 

• So a grammar for L is

L = {z ∈ {a,b}* | z = xxR for some x, or |z| is odd}

S1 → aS1a | bS1b | ε

S2 → XXS2 | X  
X → a | b

S → S1 | S2  
S1 → aS1a | bS1b | ε 
S2 → XXS2 | X  
X → a | b
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Example

• This can be thought of as a union:  
– L = {anbm | n < m} ∪ {anbm | n > m} 

• Each of those two parts can be thought of as a 
concatenation: 
– L1 = {anbn} 
– L2 = {bi | i > 0} 
– L3 = {ai | i > 0} 
– L = L1L2 ∪ L3L1 

• The resulting grammar:

L = {anbm | n ≠ m}

S → S1S2 | S3S1  
S1 → aS1b | ε 
S2 → bS2 | b  
S3 → aS3 | a

Formal Language, chapter 12, slide 20
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BNF

• John Backus and Peter Naur  
• A way to use grammars to define the syntax of 

programming languages (Algol), 1959-1963 
• BNF: Backus-Naur Form 
• A BNF grammar is a CFG, with notational changes: 

– Nonterminals are written as words enclosed in angle 
brackets: <exp> instead of E 

– Productions use ::= instead of → 
– The empty string is <empty> instead of ε 

• CFGs (due to Chomsky) came a few years earlier, but 
BNF was developed independently

Formal Language, chapter 12, slide 22
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Example

• This BNF generates a little language of 
expressions: 
– a<b 
– (a-(b*c))

<exp> ::= <exp> - <exp> | <exp> * <exp> | <exp> = <exp> 
   | <exp> < <exp> | (<exp>) | a | b | c
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Example

• This BNF generates C-like statements, like 
– while (a<b) {  

  c = c * a;  
  a = a + a;  
} 

• This is just a toy example; the BNF grammar for a full language 
may include hundreds of productions

<stmt> ::= <exp-stmt> | <while-stmt> | <compound-stmt> |... 
<exp-stmt> ::= <exp> ;  
<while-stmt> ::= while ( <exp> ) <stmt> 
<compound-stmt> ::= { <stmt-list> }  
<stmt-list> ::= <stmt> <stmt-list> | <empty>
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25

Outline

• 12.1 Context-Free Grammars and Languages 
• 12.2 Writing CFGs 
• 12.3 CFG Applications: BNF 
• 12.4 Parse Trees 
• 12.5 Ambiguity 
• 12.6 EBNF

Formal Language, chapter 12, slide 25



26

Formal vs. Programming Languages

• A formal language is just a set of strings: 
– DFAs, NFAs, grammars, and regular expressions 

define these sets in a purely syntactic way 
– They do not ascribe meaning to the strings 

• Programming languages are more than that: 
– Syntax, as with formal languages 
– Plus semantics: what the program means, what it 

is supposed to do 
• The BNF grammar specifies not only syntax, 

but a bit of semantics as well
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Parse Trees

• We've treated productions as rules for building 
strings 

• Now think of them as rules for building trees: 
– Start with S at the root 
– Add children to the nodes, always following the 

rules of the grammar:  R → x says that  the 
symbols in x may be added as children of the 
nonterminal symbol R 

– Stop only when all the leaves are terminal symbols 
• The result is a parse tree

Formal Language, chapter 12, slide 27
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Example

<exp> ⇒ <exp> * <exp>  
 ⇒ <exp> - <exp> * <exp>  
 ⇒ a- <exp> * <exp>  
 ⇒ a-b* <exp> 
 ⇒ a-b*c

<exp> ::= <exp> - <exp> | <exp> * <exp> | <exp> = <exp> 
   | <exp> < <exp> | (<exp>) | a | b | c

<exp> 

<exp>   *   <exp> 

b  

<exp>   -   <exp> 

a  

c  
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• The parse tree specifies: 
– Syntax: it demonstrates that a-b*c is in the language 
– Also, the beginnings of semantics: it is a plan for evaluating the 

expression when the program is run 
– First evaluate a-b, then multiply that result by c 

• It specifies how the parts of the program fit together 
• And that says something about what happens when the program 

runs

<exp> 

<exp>   *   <exp> 

b  

<exp>   -   <exp> 

a  

c  
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Parsing

• To parse a program is to find a parse tree for 
it, with respect to a grammar for the language 

• Every time you compile a program, the 
compiler must first parse it 

• The parse tree (or a simplified version called 
the abstract syntax tree) is one of the central 
data structures of almost every compiler 

• More about algorithms for parsing in chapter 
15
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• A grammar is ambiguous if there is a string in 
the language with more than one parse tree 

• The grammar above is ambiguous:

<exp> ::= <exp> - <exp> | <exp> * <exp> | <exp> = <exp> 
   | <exp> < <exp> | (<exp>) | a | b | c

<exp> 

<exp>   -   <exp> 

c  

<exp>   *   <exp> 

b  

a  

 

<exp> 

<exp>   *   <exp> 

b  

<exp>   -   <exp> 

a  

c  

Formal Language, chapter 12, slide 32



33

Ambiguity

• That kind of ambiguity is unacceptable 
• Part of the definition of the language must be a clear decision on 

whether a–b*c means (a-b)×c or a-(b×c) 
• To resolve this problem, BNF grammars are usually crafted to be 

unambiguous 
• They not only specify the syntax, but do so with a unique parse 

tree for each program, one that agrees with the intended 
semantics 

• Not usually difficult, but it generally means making the grammar 
more complicated
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<exp> ::= <ltexp> = <exp> | <ltexp> 
<ltexp> ::= <ltexp> < <subexp> | <subexp> 
<subexp> ::= <subexp> - <mulexp> | <mulexp> 
<mulexp> ::= <mulexp> * <rootexp> | <rootexp> 
<rootexp> ::= (<exp>) | a | b | c

<exp> 

<subexp>  -      <mulexp> 

c  

<mulexp>  *  <rootexp> 

b  a  

<ltexp> 

<subexp> 

<rootexp> 

<mulexp> 

<rootexp> 
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Trade-Off

• The new grammar is unambiguous 
– Strict precedence: *, then -, then <, then = 
– Strict associativity: left, so a-b-c is computed as (a-b)-c 

• On the other hand, it is longer and less readable 
• Many BNFs are meant to be used both by people and directly by 

computer programs 
– The code for the parser part of a compiler can be generated 

automatically from the grammar by a parser-generator 
– Such programs really want unambiguous grammars
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Inherent Ambiguity

• There are CFLs for which it is not possible to 
give an unambiguous grammar 

• They are inherently ambiguous 
• This is not usually a problem for programming 

languages
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Extending BNF

• More metasymbols to help with common 
patterns of language definition: 
– [ something ] means that the something inside is 

optional 
– { something } means that the something inside can 

be repeated any number of times (zero or more), 
like the Kleene star in regular expressions 

– Plain parentheses are used to group things, so that 
|, [], and {} can be combined unambiguously
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Examples

• An if-then statement with optional else 

• A list of zero or more statements, each ending 
with a semicolon 

• A list of zero or more things, each of which 
can be either a statement or a declaration and 
each ending with a semicolon:

<if-stmt> ::= if <expr> then <stmt> [else <stmt>]

<stmt-list> ::= {<stmt> ;}

<thing-list> ::= { (<stmt> | <declaration>) ;}
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EBNF

• Plain BNF can handle all those examples, but 
they're easier with our extensions 

• Any grammar syntax that extends BNF in this 
way is called an extended BNF (EBNF) 

• Many variations have been used 
• There is no widely accepted standard
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EBNF and Parse Trees

• The use of {} metasymbols obscures the form of the 
parse tree 
– BNF: <mulexp> ::= <mulexp> * <rootexp> | <rootexp> 

– EBNF: <mulexp> ::= <rootexp> {* <rootexp>} 

• The BNF allows only a left-associative parse tree for 
something like a*b*c 

• The EBNF is unclear 
• With some EBNFs the form above implies left 

associativity, but there is no widely accepted standard 
for such conventions
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