
1

Chapter Twelve: 
Context-Free Languages

Formal Language, chapter 12, slide 1

2

We defined the right-linear grammars by giving a simple restriction on
the form of each production. By relaxing that restriction a bit, we get

a broader class of grammars: the context-free grammars. These
grammars generate the context-free languages, which include all the

regular languages along with many that are not regular.

Formal Language, chapter 12, slide 2

3

Outline

• 12.1 Context-Free Grammars and Languages
• 12.2 Writing CFGs
• 12.3 CFG Applications: BNF
• 12.4 Parse Trees
• 12.5 Ambiguity
• 12.6 EBNF

Formal Language, chapter 12, slide 3

4

Examples

• We've proved that these languages are not
regular, yet they have grammars
– {anbn}

– {xxR | x ∈ {a,b}*}

– {anbjan | n ≥ 0, j ≥ 1}  

• Although not right-linear, these grammars still
follow a rather restricted form…

S → aSb | ε

S → aSa | bSb | ε

S → aSa | R
R → bR | b

Formal Language, chapter 12, slide 4

5

Context-Free Grammars

• A context-free grammar (CFG) is one in which
every production has a single nonterminal
symbol on the left-hand side

• A production like R → y is permitted
– It says that R can be replaced with y, regardless of

the context of symbols around R in the string
• One like uRz → uyz is not permitted

– That would be context-sensitive: it says that R can
be replaced with y only in a specific context

Formal Language, chapter 12, slide 5

6

Context-Free Languages

• A context-free language (CFL) is one that is
L(G) for some CFG G

• Every regular language is a CFL
– Every regular language has a right-linear grammar
– Every right-linear grammar is a CFG

• But not every CFL is regular
– {anbn}
– {xxR | x ∈ {a,b}*}
– {anbjan | n ≥ 0, j ≥ 1}

Formal Language, chapter 12, slide 6

7

Language Classes So Far

regular
languages

CFLs

L(a*b*)

{anbn}

Formal Language, chapter 12, slide 7

8

Outline

• 12.1 Context-Free Grammars and Languages
• 12.2 Writing CFGs
• 12.3 CFG Applications: BNF
• 12.4 Parse Trees
• 12.5 Ambiguity
• 12.6 EBNF

Formal Language, chapter 12, slide 8

9

Writing CFGs
• Programming:

– A program is a finite, structured, mechanical thing that specifies a
potentially infinite collection of runtime behaviors

– You have to imagine how the code you are crafting will unfold when
it executes

• Writing grammars:
– A grammar is a finite, structured, mechanical thing that specifies a

potentially infinite language
– You have to imagine how the productions you are crafting will unfold

in the derivations of terminal strings
• Programming and grammar-writing use some of the same mental

muscles
• Here follow some techniques and examples…

Formal Language, chapter 12, slide 9

10

Regular Languages

• If the language is regular, we already have a
technique for constructing a CFG
– Start with an NFA
– Convert to a right-linear grammar using the

construction from chapter 10

Formal Language, chapter 12, slide 10

11

Example
L = {x ∈ {0,1}* | the number of 0s in x is divisible by 3}

S → 1S | 0T | ε 
T → 1T | 0U  
U → 1U | 0S

S U 0

0

1

T 0

1 1

Formal Language, chapter 12, slide 11

12

Example

• The conversion from NFA to grammar always works
• But it does not always produce a pretty grammar
• It may be possible to design a smaller or otherwise more

readable CFG manually:

L = {x ∈ {0,1}* | the number of 0s in x is divisible by 3}

S → 1S | 0T | ε 
T → 1T | 0U  
U → 1U | 0S

S → T0T0T0S | T
T → 1T | ε

Formal Language, chapter 12, slide 12

13

Balanced Pairs

• CFLs often seem to involve balanced pairs
– {anbn}: every a paired with b on the other side
– {xxR | x ∈ {a,b}*}: each symbol in x paired with its

mirror image in xR
– {anbjan | n ≥ 0, j ≥ 1}: each a on the left paired with

one on the right
• To get matching pairs, use a recursive

production of the form R → xRy
• This generates any number of xs, each of

which is matched with a y on the other side
Formal Language, chapter 12, slide 13

14

Examples

• We've seen these before:
– {anbn}

– {xxR | x ∈ {a,b}*}

– {anbjan | n ≥ 0, j ≥ 1}

• Notice that they all use the R → xRy trick

S → aSb | ε

S → aSa | bSb | ε

S → aSa | R
R → bR | b

Formal Language, chapter 12, slide 14

15

S → aSbbb | ε

S → XSY | ε
X → a | b
Y → c | d

Examples

• {anb3n}
– Each a on the left can be paired with three bs on the right
– That gives

• {xy | x ∈ {a,b}*, y ∈ {c,d}*, and |x| = |y|}
– Each symbol on the left (either a or b) can be paired with one on the

right (either c or d)
– That gives

Formal Language, chapter 12, slide 15

16

Concatenations
• A divide-and-conquer approach is often helpful
• For example, L = {anbncmdm}

– We can make grammars for {anbn} and {cmdm}:

– Now every string in L consists of a string from the first followed by a
string from the second

– So combine the two grammars and add a new start symbol:

S1 → aS1b | ε S2 → cS2d | ε

S → S1S2  
S1 → aS1b |
εS2 → cS2d | ε

Formal Language, chapter 12, slide 16

17

Concatenations, In General

• Sometimes a CFL L can be thought of as the
concatenation of two languages L1 and L2
– That is, L = L1L2 = {xy | x ∈ L1 and y ∈ L2}

• Then you can write a CFG for L by combining
separate CFGs for L1 and L2
– Be careful to keep the two sets of nonterminals separate, so

no nonterminal is used in both
– In particular, use two separate start symbols S1 and S2

• The grammar for L consists of all the productions from
the two sub-grammars, plus a new start symbol S with
the production S → S1S2

Formal Language, chapter 12, slide 17

18

Unions, In General

• Sometimes a CFL L can be thought of as the union of
two languages L = L1 ∪ L2

• Then you can write a CFG for L by combining
separate CFGs for L1 and L2
– Be careful to keep the two sets of nonterminals separate, so

no nonterminal is used in both
– In particular, use two separate start symbols S1 and S2

• The grammar for L consists of all the productions from
the two sub-grammars, plus a new start symbol S with
the production S → S1 | S2

Formal Language, chapter 12, slide 18

19

Example

• This can be thought of as a union: L = L1 ∪ L2

– L1 = {xxR | x ∈ {a,b}*}

– L2 = {z ∈ {a,b}* | |z| is odd}

• So a grammar for L is

L = {z ∈ {a,b}* | z = xxR for some x, or |z| is odd}

S1 → aS1a | bS1b | ε

S2 → XXS2 | X  
X → a | b

S → S1 | S2  
S1 → aS1a | bS1b | ε 
S2 → XXS2 | X  
X → a | b

Formal Language, chapter 12, slide 19

20

Example

• This can be thought of as a union:
– L = {anbm | n < m} ∪ {anbm | n > m}

• Each of those two parts can be thought of as a
concatenation:
– L1 = {anbn}
– L2 = {bi | i > 0}
– L3 = {ai | i > 0}
– L = L1L2 ∪ L3L1

• The resulting grammar:

L = {anbm | n ≠ m}

S → S1S2 | S3S1  
S1 → aS1b | ε 
S2 → bS2 | b  
S3 → aS3 | a

Formal Language, chapter 12, slide 20

21

Outline

• 12.1 Context-Free Grammars and Languages
• 12.2 Writing CFGs
• 12.3 CFG Applications: BNF
• 12.4 Parse Trees
• 12.5 Ambiguity
• 12.6 EBNF

Formal Language, chapter 12, slide 21

22

BNF

• John Backus and Peter Naur
• A way to use grammars to define the syntax of

programming languages (Algol), 1959-1963
• BNF: Backus-Naur Form
• A BNF grammar is a CFG, with notational changes:

– Nonterminals are written as words enclosed in angle
brackets: <exp> instead of E

– Productions use ::= instead of →
– The empty string is <empty> instead of ε

• CFGs (due to Chomsky) came a few years earlier, but
BNF was developed independently

Formal Language, chapter 12, slide 22

23

Example

• This BNF generates a little language of
expressions:
– a<b
– (a-(b*c))

<exp> ::= <exp> - <exp> | <exp> * <exp> | <exp> = <exp> 
 | <exp> < <exp> | (<exp>) | a | b | c

Formal Language, chapter 12, slide 23

24

Example

• This BNF generates C-like statements, like
– while (a<b) {  

 c = c * a;  
 a = a + a;  
}

• This is just a toy example; the BNF grammar for a full language
may include hundreds of productions

<stmt> ::= <exp-stmt> | <while-stmt> | <compound-stmt> |... 
<exp-stmt> ::= <exp> ;  
<while-stmt> ::= while (<exp>) <stmt> 
<compound-stmt> ::= { <stmt-list> }  
<stmt-list> ::= <stmt> <stmt-list> | <empty>

Formal Language, chapter 12, slide 24

25

Outline

• 12.1 Context-Free Grammars and Languages
• 12.2 Writing CFGs
• 12.3 CFG Applications: BNF
• 12.4 Parse Trees
• 12.5 Ambiguity
• 12.6 EBNF

Formal Language, chapter 12, slide 25

26

Formal vs. Programming Languages

• A formal language is just a set of strings:
– DFAs, NFAs, grammars, and regular expressions

define these sets in a purely syntactic way
– They do not ascribe meaning to the strings

• Programming languages are more than that:
– Syntax, as with formal languages
– Plus semantics: what the program means, what it

is supposed to do
• The BNF grammar specifies not only syntax,

but a bit of semantics as well

Formal Language, chapter 12, slide 26

27

Parse Trees

• We've treated productions as rules for building
strings

• Now think of them as rules for building trees:
– Start with S at the root
– Add children to the nodes, always following the

rules of the grammar: R → x says that the
symbols in x may be added as children of the
nonterminal symbol R

– Stop only when all the leaves are terminal symbols
• The result is a parse tree

Formal Language, chapter 12, slide 27

28

Example

<exp> ⇒ <exp> * <exp>  
 ⇒ <exp> - <exp> * <exp>  
 ⇒ a- <exp> * <exp>  
 ⇒ a-b* <exp> 
 ⇒ a-b*c

<exp> ::= <exp> - <exp> | <exp> * <exp> | <exp> = <exp> 
 | <exp> < <exp> | (<exp>) | a | b | c

<exp>

<exp> * <exp>

b

<exp> - <exp>

a

c

Formal Language, chapter 12, slide 28

29

• The parse tree specifies:
– Syntax: it demonstrates that a-b*c is in the language
– Also, the beginnings of semantics: it is a plan for evaluating the

expression when the program is run
– First evaluate a-b, then multiply that result by c

• It specifies how the parts of the program fit together
• And that says something about what happens when the program

runs

<exp>

<exp> * <exp>

b

<exp> - <exp>

a

c

Formal Language, chapter 12, slide 29

30

Parsing

• To parse a program is to find a parse tree for
it, with respect to a grammar for the language

• Every time you compile a program, the
compiler must first parse it

• The parse tree (or a simplified version called
the abstract syntax tree) is one of the central
data structures of almost every compiler

• More about algorithms for parsing in chapter
15

Formal Language, chapter 12, slide 30

31

Outline

• 12.1 Context-Free Grammars and Languages
• 12.2 Writing CFGs
• 12.3 CFG Applications: BNF
• 12.4 Parse Trees
• 12.5 Ambiguity
• 12.6 EBNF

Formal Language, chapter 12, slide 31

32

• A grammar is ambiguous if there is a string in
the language with more than one parse tree

• The grammar above is ambiguous:

<exp> ::= <exp> - <exp> | <exp> * <exp> | <exp> = <exp> 
 | <exp> < <exp> | (<exp>) | a | b | c

<exp>

<exp> - <exp>

c

<exp> * <exp>

b

a

<exp>

<exp> * <exp>

b

<exp> - <exp>

a

c

Formal Language, chapter 12, slide 32

33

Ambiguity

• That kind of ambiguity is unacceptable
• Part of the definition of the language must be a clear decision on

whether a–b*c means (a-b)×c or a-(b×c)
• To resolve this problem, BNF grammars are usually crafted to be

unambiguous
• They not only specify the syntax, but do so with a unique parse

tree for each program, one that agrees with the intended
semantics

• Not usually difficult, but it generally means making the grammar
more complicated

Formal Language, chapter 12, slide 33

34

<exp> ::= <ltexp> = <exp> | <ltexp> 
<ltexp> ::= <ltexp> < <subexp> | <subexp> 
<subexp> ::= <subexp> - <mulexp> | <mulexp> 
<mulexp> ::= <mulexp> * <rootexp> | <rootexp> 
<rootexp> ::= (<exp>) | a | b | c

<exp>

<subexp> - <mulexp>

c

<mulexp> * <rootexp>

b a

<ltexp>

<subexp>

<rootexp>

<mulexp>

<rootexp>

Formal Language, chapter 12, slide 34

35

Trade-Off

• The new grammar is unambiguous
– Strict precedence: *, then -, then <, then =
– Strict associativity: left, so a-b-c is computed as (a-b)-c

• On the other hand, it is longer and less readable
• Many BNFs are meant to be used both by people and directly by

computer programs
– The code for the parser part of a compiler can be generated

automatically from the grammar by a parser-generator
– Such programs really want unambiguous grammars

Formal Language, chapter 12, slide 35

36

Inherent Ambiguity

• There are CFLs for which it is not possible to
give an unambiguous grammar

• They are inherently ambiguous
• This is not usually a problem for programming

languages

Formal Language, chapter 12, slide 36

37

Outline

• 12.1 Context-Free Grammars and Languages
• 12.2 Writing CFGs
• 12.3 CFG Applications: BNF
• 12.4 Parse Trees
• 12.5 Ambiguity
• 12.6 EBNF

Formal Language, chapter 12, slide 37

38

Extending BNF

• More metasymbols to help with common
patterns of language definition:
– [something] means that the something inside is

optional
– { something } means that the something inside can

be repeated any number of times (zero or more),
like the Kleene star in regular expressions

– Plain parentheses are used to group things, so that
|, [], and {} can be combined unambiguously

Formal Language, chapter 12, slide 38

39

Examples

• An if-then statement with optional else

• A list of zero or more statements, each ending
with a semicolon

• A list of zero or more things, each of which
can be either a statement or a declaration and
each ending with a semicolon:

<if-stmt> ::= if <expr> then <stmt> [else <stmt>]

<stmt-list> ::= {<stmt> ;}

<thing-list> ::= { (<stmt> | <declaration>) ;}

Formal Language, chapter 12, slide 39

40

EBNF

• Plain BNF can handle all those examples, but
they're easier with our extensions

• Any grammar syntax that extends BNF in this
way is called an extended BNF (EBNF)

• Many variations have been used
• There is no widely accepted standard

Formal Language, chapter 12, slide 40

41

EBNF and Parse Trees

• The use of {} metasymbols obscures the form of the
parse tree
– BNF: <mulexp> ::= <mulexp> * <rootexp> | <rootexp>

– EBNF: <mulexp> ::= <rootexp> {* <rootexp>}

• The BNF allows only a left-associative parse tree for
something like a*b*c

• The EBNF is unclear
• With some EBNFs the form above implies left

associativity, but there is no widely accepted standard
for such conventions

Formal Language, chapter 12, slide 41

