
1

Chapter Thirteen: 
Stack Machines

Formal Language, chapter 13, slide 1

2

Stacks are ubiquitous in computer programming, and they have an important
role in formal language as well. A stack machine is a kind of automaton

that uses a stack for auxiliary data storage. The size of the stack is
unbounded—it never runs out of space—and that gives stack machines an
edge over finite automata. In effect, stack machines have infinite memory,

though they must use it in stack order.

If you travel by two paths that seem to depart in different directions, it is a
surprise to discover that they lead to the same destination. It makes that
destination feel more important—an intersection rather than a dead end.
That is the situation with context-free languages. Stack machines and

CFGs seem like two very different mechanisms for language definition—
two paths that depart in different directions. But it turns out that these

two paths lead to the same place. The set of languages that can be defined
using a stack machine is exactly the same as the set of languages that can be

defined using a CFG: the context-free languages.

Formal Language, chapter 13, slide 2

3

Outline

• 13.1 Stack Machine Basics
• 13.2 A Stack Machine for {anbn}
• 13.3 A Stack Machine for {xxR}
• 13.4 Stack Machines, Formally Defined
• 13.5 Example: Equal Counts
• 13.6 Example: A Regular Language
• 13.7 A Stack Machine for Every CFG
• 13.8 A CFG For Every Stack Machine

Formal Language, chapter 13, slide 3

4

Stacks

• A stack machine maintains an unbounded
stack of symbols

• We'll represent these stacks as strings
• Left end of the string is the top of the stack

– For example, abc is a stack with a on top and c on
the bottom

– Popping abc gives you the symbol a, leaving bc on
the stack

– Pushing b onto abc produces the stack babc

Formal Language, chapter 13, slide 4

5

 read pop push
 a c abc

Stack Machine Moves

• A stack machine is an automaton for defining
languages, but unlike DFA and NFA: no states!

• It is specified by a table that shows the moves it is
allowed to make. For example: 
 
 

• Meaning:
– If the current input symbol is a, and
– if the symbol on top of the stack is c, it may make this move:
– pop off the c, push abc, and advance to the next input symbol

Formal Language, chapter 13, slide 5

6

 read pop push
 a c c

Leaving The Stack Unchanged

• Every move pops one symbol off, then pushes a string
of zero or more symbols on

• To specify a move that leaves the stack unchanged,
you can explicitly push the popped symbol back on: 
 
 

• Meaning:
– If the current input symbol is a, and
– if the symbol on top of the stack is c, it may make this move:
– pop off the c, push it back on, and advance to the next input

symbol

Formal Language, chapter 13, slide 6

7

 read pop push
 a c

Popping The Stack

• Every move pushes a string onto the stack
• To specify a move that pops but does not push, you

can explicitly push the empty string: 
 

• Meaning:
– If the current input symbol is a, and
– if the symbol on top of the stack is c, it may make this move:
– pop off the c, push nothing in its place, and advance to the

next input symbol

Formal Language, chapter 13, slide 7

8

 read pop push
 c a b

Moves On No Input

• The first column can be ε
• Like a ε-transition in an NFA, this specifies a move

that is made without reading an input symbol

• Meaning:
– Regardless of what the next input symbol (if any) is,
– if the symbol on top of the stack is c, it may make this move:
– pop off the c, and push ab in its place

Formal Language, chapter 13, slide 8

9

Stack Machines

• A stack machine starts with a stack that contains just
one symbol, the start symbol S

• On each move it can alter its stack, but only as we
have seen: only in stack order

• Like an NFA, a stack machine may be
nondeterministic: it may have more than one
sequence of legal moves on a given input

• A string is in the language if there is at least one
sequence of legal moves that reads the entire input
string and ends with the stack empty

Formal Language, chapter 13, slide 9

10

 read pop push
1 . S a b
2 . a S e f
3 . a S

Example

• Consider input a (and, as always, initial stack S):
• Three possible sequences of moves

– Move 1 first: no input is read and the stack becomes ab; then
stuck, rejecting since input not finished and stack not empty

– Move 2 first: a is read and the stack becomes ef; rejecting
since stack not empty

– Move 3 first: a is read and the stack becomes empty;
accepting

Formal Language, chapter 13, slide 10

11

Outline

• 13.1 Stack Machine Basics
• 13.2 A Stack Machine for {anbn}
• 13.3 A Stack Machine for {xxR}
• 13.4 Stack Machines, Formally Defined
• 13.5 Example: Equal Counts
• 13.6 Example: A Regular Language
• 13.7 A Stack Machine for Every CFG
• 13.8 A CFG For Every Stack Machine

Formal Language, chapter 13, slide 11

12

Strategy For {anbn}

• We'll make a stack machine that defines the
language {anbn}

• As always, the stack starts with S
• Reading the input string from left to right:

1. For each a you read, pop off the S, push a 1, then push the
S back on top

– In the middle of the string, pop off the S; at this point the
stack contains just a list of zero or more 1s, one for each a
that was read

– For each b you read, pop a 1 off the stack
• This ends with all input read and the stack empty, if

and only if the input was in {anbn}

Formal Language, chapter 13, slide 12

13

Stack Machine For {anbn}

• That strategy again:
1. For each a you read, pop off the S, push a 1, then push the

S back on top
2. In the middle of the string, pop off the S; at this point the

stack contains just a list of zero or more 1s, one for each a
that was read

3. For each b you read, pop a 1 off the stack

 read pop push
1 . a S S 1
2 . S
3 . b 1

Formal Language, chapter 13, slide 13

14

• Accepting aaabbb:
– Start: input: aaabbb; stack: S
– Move 1: input: aaabbb; stack: S1
– Move 1: input: aaabbb; stack: S11
– Move 1: input: aaabbb; stack: S111
– Move 2: input: aaabbb; stack: 111
– Move 3: input: aaabbb; stack: 11
– Move 3: input: aaabbb; stack: 1
– Move 3: input: aaabbb_; stack empty

 read pop push
1 . a S S 1
2 . S
3 . b 1

Formal Language, chapter 13, slide 14

15

• A rejecting sequence for aaabbb:
– Start: input: aaabbb; stack: S
– Move 1: input: aaabbb; stack: S1
– Move 2: input: aaabbb; stack: 1
– No legal move from here

• But, as we've seen, there is an accepting
sequence, so aaabbb is in the language
defined by the stack machine

 read pop push
1 . a S S 1
2 . S
3 . b 1

Formal Language, chapter 13, slide 15

16

Outline

• 13.1 Stack Machine Basics
• 13.2 A Stack Machine for {anbn}
• 13.3 A Stack Machine for {xxR}
• 13.4 Stack Machines, Formally Defined
• 13.5 Example: Equal Counts
• 13.6 Example: A Regular Language
• 13.7 A Stack Machine for Every CFG
• 13.8 A CFG For Every Stack Machine

Formal Language, chapter 13, slide 16

17

Strategy For {xxR}

• We'll make a stack machine for {xxR | x ∈ {a,b}*}
• Reading the input string from left to right:

1. For each a you read, pop off the S, push a, then push the S back
on top

– For each b you read, pop off the S, push b, then push the S back
on top

1. In the middle of the string, pop off the S; at this point the stack
contains just a sequence of as and bs, the reverse of the input
string read so far

– For each a you read, pop a off the stack
– For each b you read, pop b off the stack

• This ends with all input read and the stack empty, if and only if
the input was in {xxR | x ∈ {a,b}*}

Formal Language, chapter 13, slide 17

18

Stack Machine For {xxR}

• That strategy again:
1. For each a you read, pop off the S, push a, then push the S back

on top
2. For each b you read, pop off the S, push b, then push the S back

on top
3. In the middle of the string, pop off the S; at this point the stack

contains just a sequence of as and bs, the reverse of the input
string read so far

4. For each a you read, pop a off the stack
5. For each b you read, pop b off the stack

 read pop push
1 . a S S a
2 . b S S b
3 . S
4 . a a
5 . b b

Formal Language, chapter 13, slide 18

19

• Accepting abbbba:
– Start: input: abbbba; stack: S
– Move 1: input: abbbba; stack: Sa
– Move 2: input: abbbba; stack: Sba
– Move 2: input: abbbba; stack: Sbba
– Move 3: input: abbbba; stack: bba
– Move 5: input: abbbba; stack: ba
– Move 5: input: abbbba; stack: a
– Move 4: input: abbbba_; stack empty

 read pop push
1 . a S S a
2 . b S S b
3 . S
4 . a a
5 . b b

Formal Language, chapter 13, slide 19

20

Nondeterminism

• This stack machine (like the previous) can pop the S
off the top of the stack at any time

• But there is only one correct time: it must be popped
off in the middle of the input string

• This uses the nondeterminism of stack machines
• We can think of these machines as making a guess

about where the middle of the input is
• All the sequences with a wrong guess reject
• But the one sequence that makes the right guess

accepts, and one is all it takes

Formal Language, chapter 13, slide 20

21

Outline

• 13.1 Stack Machine Basics
• 13.2 A Stack Machine for {anbn}
• 13.3 A Stack Machine for {xxR}
• 13.4 Stack Machines, Formally Defined
• 13.5 Example: Equal Counts
• 13.6 Example: A Regular Language
• 13.7 A Stack Machine for Every CFG
• 13.8 A CFG For Every Stack Machine

Formal Language, chapter 13, slide 21

22

The 4-Tuple

• A stack machine M is a 4-tuple M = (Γ, Σ, S, δ)
– Γ is the stack alphabet
– Σ is the input alphabet
– S ∈ Γ is the initial stack symbol
– δ ∈ ((Σ∪{ε}) × Γ → P(Γ*) is the transition function

• The stack alphabet and the input alphabet may
or may not have symbols in common

Formal Language, chapter 13, slide 22

23

Transition Function

• Type is δ ∈ ((Σ∪{ε}) × Γ → P(Γ*)
• That is, in δ(x,y) = Z:

– x is an input symbol or ε
– y is a stack symbol
– The result Z is a set of strings of stack symbols

• The result is a set because the stack machine is
nondeterministic

• For a given input symbol x and top-of-stack symbol y,
there may be more than one move

• So, there may be more than one string that can be
pushed onto the stack in place of y

Formal Language, chapter 13, slide 23

24

Example

• M = (Γ, Σ, S, δ) where
– Γ = {S, a, b, e, f}
– Σ = {a}
– δ(ε,S) = {ab} 
δ(a,S) = {ε, ef}

 read pop push
1 . S a b
2 . a S e f
3 . a S

Formal Language, chapter 13, slide 24

25

Instantaneous Descriptions

• At any point in a stack machine's operation, its future
depends on two things:
– That part of the input string that is still to be read
– The current contents of the stack

• An instantaneous description (ID) for a stack machine
is a pair (x, y) where:
– x ∈ Σ* is the unread part of the input
– y ∈ Γ* is the current stack contents

• As always, the left end of the string y is considered to
be the top of the stack

Formal Language, chapter 13, slide 25

26

A One-Move Relation On IDs

• We will write I ↦ J if I is an ID and J is ID that
follows from I after one move of the stack
machine

• Technically: ↦ is a relation on IDs, defined by the
δ function for the stack machine as follows:
– Regular transitions: (ax, Bz) ↦ (x, yz) if and only if  

y ∈ δ(a,B)
– ε-transitions: (x, Bz) ↦ (x, yz) if and only if  

y ∈ δ(ε,B).

• Note no move is possible when stack is empty
Formal Language, chapter 13, slide 26

27

Zero-Or-More-Move Relation

• As we did with grammars and NFAs, we
extend this to a zero-or-more-move ↦*

• Technically, ↦* is a relation on IDs, with I ↦* J if
and only if there is a sequence of zero or more
relations that starts with I and ends with J

• Note this is reflexive by definition: we always
have I ↦* I by a sequence of zero moves

Formal Language, chapter 13, slide 27

28

A Stack Machine's Language

• The language accepted by a stack machine is
the set of input strings for which there is at
least one sequence of moves that ends with
the whole string read and the stack empty

• Technically, L(M) = {x ∈ Σ* | (x, S) ↦* (ε, ε)}

Formal Language, chapter 13, slide 28

29

 read pop push
1 . a S S a
2 . b S S b
3 . S
4 . a a
5 . b b

Previous Example

• Accepting abbbba:
– Start: input: abbbba; stack: S
– Move 1: input: abbbba; stack: Sa
– Move 2: input: abbbba; stack: Sba
– Move 2: input: abbbba; stack: Sbba
– Move 3: input: abbbba; stack: bba
– Move 5: input: abbbba; stack: ba
– Move 5: input: abbbba; stack: a
– Move 4: input: abbbba_; stack empty

Formal Language, chapter 13, slide 29

30

Example,
Continued

• M = ({a,b,S}, {a,b}, S, δ), where

– δ(a,S) = {Sa} δ(b,S) = {Sb} δ(ε,S) = {ε}  
δ(a,a) = {ε} δ(b,b) = {ε}

• The accepting sequence of moves for abbbba is

– (abbbba, S) ↦ (bbbba, Sa) ↦ (bbba, Sba) ↦ (bba, Sbba)  
 ↦ (bba, bba) ↦ (ba, ba) ↦ (a, a) ↦ (ε, ε)

• (abbbba, S) ↦* (ε, ε) and so abbbba ∈ L(M)

 read pop push
1 . a S S a
2 . b S S b
3 . S
4 . a a
5 . b b

Formal Language, chapter 13, slide 30

31

 read pop push
1 . a S S a
2 . b S S b
3 . S
4 . a a
5 . b b

Considering L(M)

• Only move 3 changes the number of S on the stack
• So any accepting sequence uses 3 exactly once:

 (xy, S) ↦* (y, Sz) ↦3 (y, z) ↦* (ε, ε)

 with moves 1 and 2 before 3, and 4 and 5 after
• 1 and 2 push the symbol just read, so z = xR

• 4 and 5 pop symbols matching input, so z = y
• So accepting sequences are all of this form:

 (xxR, S) ↦* (xR, SxR) ↦3 (xR, xR) ↦* (ε, ε)

• L(M) = {xxR | x ∈ {a,b}*}

Formal Language, chapter 13, slide 31

32

Outline

• 13.1 Stack Machine Basics
• 13.2 A Stack Machine for {anbn}
• 13.3 A Stack Machine for {xxR}
• 13.4 Stack Machines, Formally Defined
• 13.5 Example: Equal Counts
• 13.6 Example: A Regular Language
• 13.7 A Stack Machine for Every CFG
• 13.8 A CFG For Every Stack Machine

Formal Language, chapter 13, slide 32

33

A Language Of Equal Counts

• Let A = {x ∈ {a,b}* | the number of as in x
equals the number of bs in x}

• Not the same as {anbn}, since abab ∈ A
• A first attempt:

– For each a, push a 0
– For each b, pop a 0
– Pop off the S (at the end)

Formal Language, chapter 13, slide 33

34

First Attempt

• Moves 1 and 2 push a 0 for each a
• Move 3 pops a 0 for each b
• Move 4 pops the S, leaving the stack empty
• In any accepting sequence, move 4 comes last:

– It's the only way to move the S
– Once the stack is empty, no further moves are possible

 read pop push
1 . a S 0S
2 . a 0 0 0
3 . b 0
4 . S

Formal Language, chapter 13, slide 34

35

First Attempt

• M = ({0,S}, {a,b}, S, δ), where

– δ(a,S) = {0S} δ(a,0) = {00}  
δ(b,0) = {ε} δ(ε,S) = {ε}

• The accepting sequence of moves for abab is

– (abab, S) ↦ (bab, 0S) ↦ (ab, S) ↦ (b, 0S) ↦ (ε, S) ↦ (ε, ε)

• (abab, S) ↦* (ε, ε) and so abab ∈ L(M)

 read pop push
1 . a S 0S
2 . a 0 0 0
3 . b 0
4 . S

Formal Language, chapter 13, slide 35

36

Problem

• This works on some examples, but not all
• Everything M accepts is in our target language

A, but not everything in A is accepted by M
• Consider abba: (abba,S) ↦ (bba,0S) ↦ (ba,S)
↦ ?

• M has no way to accept strings like abba that
have a prefix with more bs than as

Formal Language, chapter 13, slide 36

37

Improved Strategy

• When the number of as so far exceeds the
number of bs, keep count with 0s on the stack,
as before

• When the number of bs so far exceeds the
number of as, keep count with 1s instead

• At the end, pop off the S

Formal Language, chapter 13, slide 37

38

Solution
• M = ({0,S}, {a,b}, S, δ), where

– δ(a,S) = {0S} δ(a,0) = {00}  
δ(b,0) = {ε} δ(b,S) = {1S} 
δ(b,1) = {11} δ(a,1) = {ε}  
δ(ε,S) = {ε}

• The accepting sequence of moves for abba is
– (abba, S) ↦ (bba, 0S) ↦ (ba, S) ↦ (a, 1S) ↦ (ε, S) ↦ (ε, ε)

• (abba, S) ↦* (ε, ε) and so abba ∈ L(M)
• This solution now has L(M) = A

 read pop push
1 . a S 0S
2 . a 0 0 0
3 . b 0
4 . b S 1S
5 . b 1 1 1
6 . a 1
7 . S

Formal Language, chapter 13, slide 38

39

Outline

• 13.1 Stack Machine Basics
• 13.2 A Stack Machine for {anbn}
• 13.3 A Stack Machine for {xxR}
• 13.4 Stack Machines, Formally Defined
• 13.5 Example: Equal Counts
• 13.6 Example: A Regular Language
• 13.7 A Stack Machine for Every CFG
• 13.8 A CFG For Every Stack Machine

Formal Language, chapter 13, slide 39

40

Simulating DFAs

• A stack machine can easily simulate any DFA
– Use the same input alphabet
– Use the states as stack symbols
– Use the start state as the start symbol
– Use a transition function that keeps exactly one

symbol on the stack: the DFA's current state
– Allow accepting states to be popped; that way, if

the DFA ends in an accepting state, the stack
machine can end with an empty stack

Formal Language, chapter 13, slide 40

41

Example

• M = ({q0, q1, q2, q3}, {0,1}, q0, δ)
– δ(0,q0) = {q0} δ(1,q0) = {q1}

– δ(0,q1) = {q2} δ(1,q1) = {q3}

– δ(0,q2) = {q0} δ(1,q2) = {q1}

– δ(0,q3) = {q2} δ(1,q3) = {q3}

– δ(ε,q2) = {ε} δ(ε,q3) = {ε}

• Accepting sequence for 0110:
– (0110, q0) ↦ (110, q0) ↦ (10, q1) ↦ (0, q3) ↦ (ε, q2) ↦ (ε, ε)

q0 q1

0

q2

q3

0
0

1

1

1
1

0

Formal Language, chapter 13, slide 41

42

DFA To Stack Machine

• Such a construction can be used to make a stack
machine equivalent to any DFA

• It can be done for NFAs too
• It tells us that the languages definable using a stack

machine include, at least, all the regular languages
• In fact, regular languages are a snap: we have an

unbounded stack we barely used
• We won't give the construction formally, because we

can do better…

Formal Language, chapter 13, slide 42

43

Outline

• 13.1 Stack Machine Basics
• 13.2 A Stack Machine for {anbn}
• 13.3 A Stack Machine for {xxR}
• 13.4 Stack Machines, Formally Defined
• 13.5 Example: Equal Counts
• 13.6 Example: A Regular Language
• 13.7 A Stack Machine for Every CFG
• 13.8 A CFG For Every Stack Machine

Formal Language, chapter 13, slide 43

44

From CFG To Stack Machine

• A CFG defines a string rewriting process
• Start with S and rewrite repeatedly, following

the rules of the grammar until fully terminal
• We want a stack machine that accepts exactly

those strings that could be generated by the
given CFG

• Our strategy for such a stack machine:
– Do a derivation, with the string in the stack
– Match the derived string against the input

Formal Language, chapter 13, slide 44

45

Strategy

• Two types of moves:
1. A move for each production X → y
2. A move for each terminal a ∈ Σ

• The first type lets it do any derivation
• The second matches the derived string and the input
• Their execution is interlaced:

– type 1 when the top symbol is nonterminal
– type 2 when the top symbol is terminal

read pop push
 X y

a a

Formal Language, chapter 13, slide 45

46

Example: {xxR | x ∈ {a,b}*}

• Derivation for abbbba:
S ⇒ aSb ⇒ abSba ⇒ abbSbba ⇒ abbbba

• Accepting sequence of moves on abbbba:
(abbbba, S) ↦1 (abbbba, aSa) ↦4 (bbbba, Sa) ↦2 (bbbba, bSba) ↦5

(bbba, Sba) ↦2 (bbba, bSbba) ↦5 (bba, Sbba) ↦3 (bba, bba) ↦5  
(ba, ba) ↦5 (a, a) ↦4 (ε, ε)

S → aSa | bSb | ε
 read pop push
1 . S aSa
2 . S bSb
3 . S
4 . a a
5 . b b

Formal Language, chapter 13, slide 46

47

Lemma 13.7

• Proof sketch: by construction
• Construct M = (V∪Σ, Σ, S, δ), where

– for all v ∈ V, δ(ε,v) = {x | (v→x) ∈ P}
– for all a ∈ Σ, δ(a,a) = {ε}

• M accepts x if and only if G generates x
• L(M) = L(G)
• (Missing: detailed proof that (x,S) ↦* (ε,ε)  

if and only if S ⇒* x)

If G = (V, Σ, S, P) is any context-free grammar,
there is some stack machine M with L(M) = L(G).

Formal Language, chapter 13, slide 47

48

Summary

• We can make a stack machine for every CFL
• That's stronger than our demonstration in the last

chapter of a stack machine for every regular language
• So now we know that the stack machines are at least

as powerful as CFGs for defining languages
• Are they more powerful? Are there stack machines

that define languages that are not CFLs?

Formal Language, chapter 13, slide 48

49

Outline

• 13.1 Stack Machine Basics
• 13.2 A Stack Machine for {anbn}
• 13.3 A Stack Machine for {xxR}
• 13.4 Stack Machines, Formally Defined
• 13.5 Example: Equal Counts
• 13.6 Example: A Regular Language
• 13.7 A Stack Machine for Every CFG
• 13.8 A CFG For Every Stack Machine

Formal Language, chapter 13, slide 49

50

From Stack Machine To CFG

• We can't just reverse the previous
construction, since it produced restricted
productions

• But we can use a similar idea
• The executions of the stack machine will be

exactly simulated by derivations in the CFG
• To do this, we'll construct a CFG with one

production for each move of the stack
machine

Formal Language, chapter 13, slide 50

51

• One-to-one correspondence:
– Where the stack machine has t ∈ δ(ω,A)…
– … the grammar has A→ωt

• Accepting sequence on abab:
(abab, S) ↦1 (bab, 0S) ↦3 (ab, S) ↦1 (b, 0S) ↦3 (ε, S) ↦7 (ε, ε)

• Derivation of abab:
S ⇒1 a0S ⇒3 abS ⇒1 aba0S ⇒3 ababS ⇒7 abab

 read pop push
1 . a S 0S
2 . a 0 0 0
3 . b 0
4 . b S 1S
5 . b 1 1 1
6 . a 1
7 . S

1. S → a0S 
2. 0 → a00  
3. 0 → b  
4. S → b1S 
5. 1 → b11  
6. 1 → a  
7. S → ε

Formal Language, chapter 13, slide 51

52

Lemma 13.8.1

• Proof by construction
• Assume that Γ∩Σ={} (without loss of generality)
• Construct G = (Γ, Σ, S, P), where  

 P = {(A→ωt) | A ∈ Γ, ω ∈ Σ∪{ε}, and t ∈ δ(ω,A)}
• Now leftmost derivations in G simulate runs of M: 

 S ⇒* xy if and only if (x,S) ↦* (ε,y)  
for any x ∈ Σ* and y ∈ Γ* (see the next lemma)

• Setting y = ε, this gives 
 S ⇒* x if and only if (x,S) ↦* (ε,ε)

• So L(G) = L(M)

If M = (Γ, Σ, S, δ) is any stack machine, there is
context-free grammar G with L(G) = L(M).

Formal Language, chapter 13, slide 52

53

Disjoint Alphabets Assumption

• The stack symbols of the stack machine become
nonterminals in the CFG

• The input symbols of the stack machine become
terminals of the CFG

• That's why we need to assume Γ∩Σ={}: symbols in a
grammar must be either terminal or nonterminal, not
both

• This assumption is without loss of generality because
we can easily rename stack machine symbols to get
disjoint alphabets…

Formal Language, chapter 13, slide 53

54

Renaming Example

• Given a stack machine with
intersecting alphabets:

• We can rename the stack
symbols (the pop and push
columns only) to get disjoint
alphabets:

• Then use the construction:

 read pop push
1 . a S Sbb
2 . S
3 . b b

 read pop push
1 . a S SBB
2 . S
3 . b B

S → aSBB | ε 
B → b

Formal Language, chapter 13, slide 54

55

Missing Lemma

• Our proof claimed that the leftmost derivations in G
exactly simulate the executions of M

• Technically, our proof said: 
 S ⇒* xy if and only if (x,S) ↦* (ε,y)  
 for any x ∈ Σ* and y ∈ Γ*

• This assertion can be proved in detail using induction
• We have avoided most such proofs this far, but this

time we'll bite the bullet and fill in the details

Formal Language, chapter 13, slide 55

56

Lemma 13.8.2

• Proof that if S ⇒* xy then (x,S) ↦* (ε,y) is by induction on the length of
the derivation

• Base case: length is zero
– S ⇒* xy with xy = S; since x ∈ Σ*, x = ε and y = S
– For these values (x,S) ↦* (ε,y) in zero steps

• Inductive case: length greater than zero
– Consider the corresponding leftmost derivation S ⇒* xy
– In G, leftmost derivations always produce a string of terminals

followed by a string of nonterminals
– So we have S ⇒* x'Ay' ⇒ xy, for some x' ∈ Σ*, A ∈ Γ, and  

y' ∈ Γ*…

For the construction of the proof of Lemma 13.8.1, for any
x ∈ Σ* and y ∈ Γ*, S ⇒* xy if and only if (x,S) ↦* (ε,y).

Formal Language, chapter 13, slide 56

57

Lemma 13.8.2, Continued

• Inductive case, continued:
– S ⇒* x'Ay' ⇒ xy, for some x' ∈ Σ*, A ∈ Γ, and y' ∈ Γ*
– By the inductive hypothesis, (x',S) ↦* (ε,Ay')
– The final step uses one of the productions (A→ωt)
– So S ⇒* x'Ay' ⇒ x'ωty' = xy, where x'ω = x and ty' = y
– Since (x',S) ↦* (ε,Ay'), we also have (x'ω,S) ↦* (ω,Ay')
– For production (A→ωt) there must be a move t ∈ δ(ω,A)
– Using this as the last move,  

(x,S) = (x'ω,S) ↦* (ω,Ay') ↦ (ε,ty') = (ε,y)
– So (x,S) ↦* (ε,y), as required

For the construction of the proof of Lemma 13.8.1, for any
x ∈ Σ* and y ∈ Γ*, S ⇒* xy if and only if (x,S) ↦* (ε,y).

Formal Language, chapter 13, slide 57

58

Lemma 13.8.2, Continued

• We have shown one direction of the "if and only if":
– if S ⇒* xy then (x,S) ↦* (ε,y)

 by induction on the number of steps in the derivation
• It remains to show the other direction:

– if (x,S) ↦* (ε,y) then S ⇒* xy

• The proof is similar, by induction on the number of steps
in the execution

For the construction of the proof of Lemma 13.8.1, for any
x ∈ Σ* and y ∈ Γ*, S ⇒* xy if and only if (x,S) ↦* (ε,y).

Formal Language, chapter 13, slide 58

59

Theorem 13.8

• Proof: follows immediately from Lemmas 13.7
and 13.8.1.

• Conclusion: CFGs and stack machines have
equivalent definitional power

A language is context free if and only if
it is L(M) for some stack machine M.

Formal Language, chapter 13, slide 59

