Chapter Fifteen:
Stack Machine Applications
The parse tree (or a simplified version called the abstract syntax tree) is one of the central data structures of almost every compiler or other programming language system. To parse a program is to find a parse tree for it. Every time you compile a program, the compiler must first parse it. Parsing algorithms are fundamentally related to stack machines, as this chapter illustrates.
Outline

• 15.1 Top-Down Parsing
• 15.2 Recursive Descent Parsing
• 15.3 Bottom-Up Parsing
• 15.4 PDAs, DPDAs, and DCFLs
Parsing

• To parse is to find a parse tree in a given grammar for a given string
• An important early task for every compiler
• To compile a program, first find a parse tree
 – That shows the program is syntactically legal
 – And shows the program's structure, which begins to tell us something about its semantics
• Good parsing algorithms are critical
• Given a grammar, build a parser…
CFG to Stack Machine, Review

- Two types of moves:
 1. A move for each production $X \rightarrow y$
 2. A move for each terminal $a \in \Sigma$
- The first type lets it do any derivation
- The second matches the derived string and the input
- Their execution is interlaced:
 - type 1 when the top symbol is nonterminal
 - type 2 when the top symbol is terminal

<table>
<thead>
<tr>
<th>read</th>
<th>pop</th>
<th>push</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>X</td>
<td>y</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>ε</td>
</tr>
</tbody>
</table>
Top Down

• The stack machine so constructed accepts by showing it can find a derivation in the CFG
• If each type-1 move linked the children to the parent, it would construct a parse tree
• The construction would be top-down (that is, starting at root S)
• One problem: the stack machine in question is highly nondeterministic
• To implement, this must be removed
Almost Deterministic

- Not deterministic, but move is easy to choose
- For example, \(a b b c b b a \) has three possible first moves, but only one makes sense:

\[
\begin{align*}
S & \rightarrow aSa | bSb | c \\
read & \quad pop & push \\
1. & \epsilon & S & aSa \\
2. & \epsilon & S & bSb \\
3. & \epsilon & S & c \\
4. & a & a & \epsilon \\
5. & b & b & \epsilon \\
6. & c & c & \epsilon \\
\end{align*}
\]

\((a b b c b b a, S) \mapsto_1 (a b b c b b a, aSa) \mapsto \ldots\)

\((a b b c b b a, S) \mapsto_2 (a b b c b b a, bSb) \mapsto \ldots\)

\((a b b c b b a, S) \mapsto_3 (a b b c b b a, c) \mapsto \ldots\)
Lookahead

\[S \rightarrow aSa \mid bSb \mid c \]

<table>
<thead>
<tr>
<th>read</th>
<th>pop</th>
<th>push</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\varepsilon)</td>
<td>S</td>
<td>aSa</td>
</tr>
<tr>
<td>2. (\varepsilon)</td>
<td>S</td>
<td>bSb</td>
</tr>
<tr>
<td>3. (\varepsilon)</td>
<td>S</td>
<td>c</td>
</tr>
<tr>
<td>4. a</td>
<td>a</td>
<td>(\varepsilon)</td>
</tr>
<tr>
<td>5. b</td>
<td>b</td>
<td>(\varepsilon)</td>
</tr>
<tr>
<td>6. c</td>
<td>c</td>
<td>(\varepsilon)</td>
</tr>
</tbody>
</table>

- To decide among the first three moves:
 - Use move 1 when the top is \(S\), next input \(a\)
 - Use move 2 when the top is \(S\), next input \(b\)
 - Use move 3 when the top is \(S\), next input \(c\)

- Choose next move by peeking at next input symbol
- One symbol of lookahead lets us parse this deterministically
Lookahead Table

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>S → aS a</td>
<td>S → bS b</td>
<td>S → c</td>
<td>$</td>
</tr>
</tbody>
</table>

- Those rules can be expressed as a two-dimensional *lookahead table*
- *table[A][c]* tells what production to use when the top of stack is *A* and the next input symbol is *c*
- Only for nonterminals *A*; when top of stack is terminal, we pop, match, and advance to next input
- The final column, *table[A][§]*, tells which production to use when the top of stack is *A* and all input has been read
- With a table like that, implementation is easy...
1. void predictiveParse(table, S) {
2. initialize a stack containing just S
3. while (the stack is not empty) {
4. A = the top symbol on stack;
5. c = the current symbol in input (or $ at the end)
6. if (A is a terminal symbol) {
7. if (A != c) the parse fails;
8. pop A and advance input to the next symbol;
9. }
10. else {
11. if table[A][c] is empty the parse fails;
12. pop A and push the right-hand side of table[A][c];
13. }
14. }
15. if input is not finished the parse fails
16. }

Formal Language, chapter 15, slide 10
The Catch

• To parse this way requires a parse table
• That is, the choice of productions to use at any point must be uniquely determined by the nonterminal and one symbol of lookahead
• Such tables can be constructed for some grammars, but not all
LL(1) Parsing

- A popular family of top-down parsing techniques
 - Left-to-right scan of the input
 - Following the order of a leftmost derivation
 - Using 1 symbol of lookahead

- A variety of algorithms, including the table-based top-down parser we just saw
LL(1) Grammars And Languages

• LL(1) grammars are those for which LL(1) parsing is possible
• LL(1) languages are those with LL(1) grammars
• There is an algorithm for constructing the LL(1) parse table for a given LL(1) grammar
• LL(1) grammars can be constructed for most programming languages, but they are not always pretty…
Not LL(1)

\[S \rightarrow (S) \mid S+S \mid S*S \mid a \mid b \mid c \]

• This grammar for a little language of expressions is not LL(1)
• For one thing, it is ambiguous
• No ambiguous grammar is LL(1)
Still Not LL(1)

\[
\begin{align*}
S & \rightarrow S+R \mid R \\
R & \rightarrow R*X \mid X \\
X & \rightarrow (S) \mid a \mid b \mid c
\end{align*}
\]

• This is an unambiguous grammar for the same language
• But it is still not LL(1)
• It has left-recursive productions like \(S \rightarrow S+R \)
• No left-recursive grammar is LL(1)
LL(1), But Ugly

- Same language, now with an LL(1) grammar
- Parse table is not obvious:
 - When would you use $S \rightarrow AR$?
 - When would you use $B \rightarrow \varepsilon$?

$S \rightarrow AR$
$R \rightarrow +AR \mid \varepsilon$
$A \rightarrow XB$
$B \rightarrow *XB \mid \varepsilon$
$X \rightarrow (S) \mid a \mid b \mid c$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>$+$</th>
<th>$*$</th>
<th>(</th>
<th>)</th>
<th>$$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$S \rightarrow AR$</td>
<td>$S \rightarrow AR$</td>
<td>$S \rightarrow AR$</td>
<td>$S \rightarrow AR$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>$R \rightarrow +AR$</td>
<td>$R \rightarrow \varepsilon$</td>
<td>$R \rightarrow \varepsilon$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>$A \rightarrow XB$</td>
<td>$A \rightarrow XB$</td>
<td>$A \rightarrow XB$</td>
<td></td>
<td>$A \rightarrow XB$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$B \rightarrow \varepsilon$</td>
<td>$B \rightarrow *XB$</td>
<td>$B \rightarrow \varepsilon$</td>
<td>$B \rightarrow \varepsilon$</td>
</tr>
<tr>
<td>X</td>
<td>$X \rightarrow a$</td>
<td>$X \rightarrow b$</td>
<td>$X \rightarrow c$</td>
<td></td>
<td></td>
<td></td>
<td>$X \rightarrow (S)$</td>
<td></td>
</tr>
</tbody>
</table>
Outline

• 15.1 Top-Down Parsing
• 15.2 Recursive Descent Parsing
• 15.3 Bottom-Up Parsing
• 15.4 PDAs, DPDAs, and DCFLs
Recursive Descent

- A different implementation of LL(1) parsing
- Same idea as a table-driven predictive parser
- But implemented without an explicit stack
- Instead, a collection of recursive functions: one for parsing each nonterminal in the grammar
\[S \rightarrow aSa \mid bSb \mid c \]

```c
void parse_S() {
    c = the current symbol in input (or $ at the end)
    if (c == 'a') { // production \( S \rightarrow aSa \)
        match('a'); parse_S(); match('a');
    }
    else if (c == 'b') { // production \( S \rightarrow bSb \)
        match('b'); parse_S(); match('b');
    }
    else if (c == 'c') { // production \( S \rightarrow c \)
        match('c');
    }
    else the parse fails;
}
```

- Still chooses move using 1 lookahead symbol
- But parse table is incorporated into the code
Recursive Descent Structure

• A function for each nonterminal, with a case for each production:

```c
if (c=='a') { // production S → aSa
    match('a'); parse_S(); match('a');
}
```

• For each RHS, a call to `match` each terminal, and a recursive call for each nonterminal:

```c
void match(x) {
    c = the current symbol in input
    if (c!=x) the parse fails;
    advance input to the next symbol;
}
```
Example:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>+</th>
<th>*</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>S → AR</td>
<td>S → AR</td>
<td>S → AR</td>
<td>S → AR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>R → +AR</td>
<td></td>
<td>R → ε</td>
<td>R → ε</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A → XB</td>
<td>A → XB</td>
<td>A → XB</td>
<td></td>
<td>A → XB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>B → ε</td>
<td>B → *XB</td>
<td>B → ε</td>
<td>B → ε</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X → a</td>
<td>X → b</td>
<td>X → c</td>
<td></td>
<td></td>
<td>X → (S)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```c
void parse_S() {
    c = the current symbol in input (or $ at the end)
    if (c=='a' || c=='b' ||
        c=='c' || c=='(') { // production S → AR
        parse_A(); parse_R();
    }
    else the parse fails;
}
```

Formal Language, chapter 15, slide 21
Example:

```
void parse_R() {
    c = the current symbol in input (or $ at the end)
    if (c=='+') // production R → +AR
        match('+'); parse_A(); parse_R();
    } else if (c==')' || c=='$') { // production R → ε
    } else the parse fails;
}
```

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>+</th>
<th>*</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>S → AR</td>
<td>S → AR</td>
<td>S → AR</td>
<td>S → AR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>R → +AR</td>
<td>R → ε</td>
<td>R → ε</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A → XB</td>
<td>A → XB</td>
<td>A → XB</td>
<td>A → XB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B → ε</td>
<td>B → *XB</td>
<td>B → ε</td>
<td>B → ε</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X → a</td>
<td>X → b</td>
<td>X → c</td>
<td>X → (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Formal Language, chapter 15, slide 22
Where's The Stack?

- Recursive descent vs. our previous table-driven top-down parser:
 - Both are top-down predictive methods
 - Both use one symbol of lookahead
 - Both require an LL(1) grammar
 - Table-driven method uses an explicit parse table; recursive descent uses a separate function for each nonterminal
 - Table-driven method uses an explicit stack; recursive descent uses the call stack

- A recursive-descent parser is a stack machine in disguise
Outline

- 15.1 Top-Down Parsing
- 15.2 Recursive Descent Parsing
- 15.3 Bottom-Up Parsing
- 15.4 PDAs, DPDAs, and DCFLs
Shift-Reduce Parsing

- It is possible to parse bottom up (starting at the leaves and doing the root last)
- An important bottom-up technique, shift-reduce parsing, has two kinds of moves:
 - (shift) Push the current input symbol onto the stack and advance to the next input symbol
 - (reduce) On top of the stack is the string x of some production $A \rightarrow x$; pop it and push the A
- The shift move is the reverse of what our LL(1) parser did; it popped terminal symbols off the stack
- The reduce move is also the reverse of what our LL(1) parser did; it popped A and pushed x
A shift-reduce parse for $abbcbba$

Root is built in the last move: that's bottom-up

Shift-reduce is central to many parsing techniques…
LR(1) Parsing

• A popular family of shift-reduce parsing techniques
 – Left-to-right scan of the input
 – Following the order of a rightmost derivation in reverse
 – Using 1 symbol of lookahead

• There are many LR(1) parsing algorithms

• Generally trickier than LL(1) parsing:
 – Choice of shift or reduce move depends on the top-of-stack string, not just the top-of-stack symbol
 – One cool trick uses stacked DFA state numbers to avoid expensive string comparisons in the stack
LR(1) Grammars And Languages

• LR(1) grammars are those for which LR(1) parsing is possible
 – Includes all of LL(1), plus many more
 – Making a grammar LR(1) usually does not require as many contortions as making it LL(1)
 – This is the big advantage of LR(1)

• LR(1) languages are those with LR(1) grammars
 – Most programming languages are LR(1)
Parser Generators

• LR parsers are usually too complicated to be written by hand
• They are usually generated automatically, by tools like yacc:
 – Input is a CFG for the language
 – Output is source code for an LR parser for the language
Beyond LR(1)

• LR(1) techniques are efficient
• Like LL(1), linear in the program size
• Beyond LR(1) are many other parsing algorithms
• Cocke-Kasami-Younger (CKY), for example:
 – Deterministic
 – Works on all CFGs
 – Much simpler than LR(1) techniques
 – But cubic in the program size
 – Much too slow for compilers and other programming-language tools
Outline

• 15.1 Top-Down Parsing
• 15.2 Recursive Descent Parsing
• 15.3 Bottom-Up Parsing
• 15.4 PDAs, DPDAs, and DCFLs
PDA

• A widely studied stack-based automaton: the pushdown automaton (PDA)
• A PDA is like an NFA plus a stack machine:
 – States and state transitions, like an NFA
 – Each transition can also manipulate an unbounded stack, like a stack machine
PDA Transitions

- Like an NFA transition: in state q, with a as the next input, read past it and go to state r
- Plus a stack machine transition: reading an a, with Z as the top of the stack, pop the Z and push an x
- All together:
 - In state q, with a as the next input, and with Z on top of the stack, read past the a, pop the Z, push x, and go to state r
Variations

• Many minor PDA variations have been studied:
 – Accept by empty stack (like stack machine), or by final state (like NFA), or require both to accept
 – Start with a special symbol on stack, or with empty stack
 – Start with special end-of-string symbol on the input, or not

• DFAs and NFAs are comparatively standardized
Why Study PDAs

• PDAs are more complicated than stack machines
• The class of languages ends up the same: the CFLs
• So why bother with PDAs?
• Several reasons:
 – They make some proofs simpler: to prove the CFLs closed for intersection with regular languages, for instance, you can do a product construction combining a PDA and an NFA
 – They make a good story: an NFA is bitten by a radioactive spider and develops super powers…
 – They have an interesting deterministic variety: the DPDAs…
Deterministic Restriction

- **Finite-state automata**
 - NFA has zero or more possible moves from each configuration
 - DFA is restricted to exactly one
 - DFA defines a simple computational procedure for deciding language membership

- **Pushdown automata**
 - PDA, like a stack machine, has zero or more possible moves from each configuration
 - DPDA is restricted to no more than one
 - DPDA gives a simple computational procedure for deciding language membership
Important Difference

- The deterministic restriction does not seriously weaken NFAs: DFAs can still define exactly the regular languages
- It *does* seriously weaken PDAs: DPDAs are strictly weaker than PDAs
- The class of languages defined by DPDAs is a proper subset of the CFLs: the DCFLs
- A deterministic context-free language (DCFL) is a language that is $L(M)$ for some DPDA M
• DCFLs includes all the regular languages
• But not all CFLs: for instance, those xx^R languages
• Intuitively, that makes sense: no way for a stack machine to decide where the middle of the string is
• On the other hand, $\{xcx^R \mid x \in \{a,b\}^*\}$ is a DCFL
Closure Properties

• DCFLs do not have the same closure properties as CFLs:
 – Not closed for union: the union of two DCFLs is not necessarily a DCFL (though it is a CFL)
 – Closed for complement: the complement of a DCFL is another DCFL
• Can be used to prove that a given CFL is not a DCFL
• Such proofs are difficult; there seems to be no equivalent of the pumping lemma for DCFLs
There It Is Again

• Language classes seem more important when they keep turning up:
 – Regular languages turn up in DFAs, NFAs, regular expressions, right-linear grammars
 – CFLs turn up in CFGs, stack machines, PDAs

• DCFLs also receive this kind of validation:
 – LR(1) languages = DCFLs