Chapter Eighteen: Uncomputability
The Church-Turing Thesis gives a definition of computability, like a border surrounding the algorithmically solvable problems.

Beyond that border is a wilderness of uncomputable problems. This is one of the great revelations of twentieth-century mathematics: the discovery of simple problems whose algorithmic solution would be very useful but is forever beyond us.
Outline

• 18.1 Decision and Recognition Methods
 • 18.2 The Language L_u
 • 18.3 The Halting Problems
 • 18.4 Reductions Proving a Language Is Recursive
 • 18.5 Reductions Proving a Language is Not Recursive
 • 18.6 Rice's Theorem
 • 18.7 Enumerators
 • 18.8 Recursively Enumerable Languages
 • 18.9 Languages That Are Not RE
 • 18.10 Language Classifications Revisited
 • 18.11 Grammars and Computability
 • 18.12 Oracles
 • 18.13 Mathematical Uncomputabilities
Switching To Java-Like Syntax

• In this chapter we switch from using Turing machines to using a Java-like syntax
• All the following ideas apply to any Turing-equivalent formalism
• Java-like syntax is easier to read than TMs
• Note, this is not real Java; no limitations
• In particular, no bounds on the length of a string or the size of an integer
Decision Methods

• Total TMs correspond to *decision methods* in our Java-like notation

• A *decision method* takes a *String* parameter and returns a boolean value

• (It always returns, and does not run forever)

• Example, \{ax | x ∈ Σ*\}:

```java
boolean ax(String p) {
    return (p.length()>0 && p.charAt(0)=='a');
}
```
Decision Method Examples

- {}:
  ```java
  boolean emptySet(String p) {
    return false;
  }
  ```

- Σ^*:
  ```java
  boolean sigmaStar(String p) {
    return true;
  }
  ```

- As with TMs, the language accepted is $L(m)$:
 - $L(\text{emptySet}) = \{\}$
 - $L(\text{sigmaStar}) = \Sigma^*$
Recursive Languages

- Previous definition: L is a recursive language if and only if it is $L(M)$ for some total TM M
- New definition: L is a recursive language if and only if it is $L(m)$ for some decision method m
- These definitions are equivalent because Java is Turing-equivalent
Recognition Methods

- For methods that might run forever, a broader term
- A recognition method takes a `String` parameter and either returns a boolean value or runs forever
- A decision method is a special kind of recognition method, just as a total TM is a special kind of TM
\{a^n b^n c^n\} Recognition Method

```java
boolean anbncn1(String p) {
    String as = "", bs = "", cs = "";
    while (true) {
        String s = as+bs+cs;
        if (p.equals(s)) return true;
        as += 'a'; bs += 'b'; cs += 'c';
    }
}
```

- Highly inefficient, but we don’t care about that
- We do care about termination; this recognition method loops forever if the string is not accepted
- It demonstrates only that \{a^n b^n c^n\} is RE; we know it is recursive, so there is a decision method for it...
\{a^n b^n c^n\} Decision Method

```java
boolean anbncn2(String p) {
    String as = "", bs = "", cs = "";
    while (true) {
        String s = as+bs+cs;
        if (s.length()>p.length()) return false;
        else if (p.equals(s)) return true;
        as += 'a'; bs += 'b'; cs += 'c';
    }
}
```

- \(L(\text{anbncn1}) = L(\text{anbncn2}) = \{a^n b^n c^n\}\)
- But \text{anbncn2} is a decision method, showing that the language is recursive and not just RE
RE Languages

• Previous definition: L is a recursively enumerable (RE) language if and only if it is $L(M)$ for some TM M

• New definition: L is an RE language if and only if it is $L(m)$ for some recognition method m

• These definitions are equivalent because Java is Turing-equivalent
Universal Java Machine

• A universal TM performs a simulation to decide whether the given TM accepts the given string
• It is possible to implement the same kind of thing in Java; a run method like this:

```java
/**
 * run(p, in) takes a String p which is the text
 * of a recognition method, and a String in which is
 * the input for that method. We compile the method,
 * run it on the given parameter string, and return
 * whatever result it returns. (If it does not
 * return, neither do we.)
 */

boolean run(String p, String in) {
    ...
}
```
run Examples

• `sigmaStar("abc")` returns true, so the `run` in this fragment would return true:

```
String s = "boolean sigmaStar(String p) {return true;}";
run(s,"abc");
```

• `ax("ba")` returns false, so the `run` in this fragment would return false:

```
String s =
    "boolean ax(String p) {
    " +
    "  return (p.length()>0 && p.charAt(0)=='a'); " +
    "}" +
run(s,"ba");
```
run Examples, Continued

• `anbncn1("abbc")` runs forever, so the `run` in this fragment would never return:

```java
String s =
  "boolean anbncn1(String p) {
    String as = ", bs = ", cs = ";
    while (true) {
      String s = as+bs+cs;
      if (p.equals(s)) return true;
      as += 'a'; bs += 'b'; cs += 'c';
    }
  }
run(s,"abbc");
```

Formal Language, chapter 18, slide 14
Relaxing the Definitions

- `run` takes two `String` parameters, so it doesn’t quite fit our definition of a recognition method.
- We could make it fit by redefining it using a single delimited input: `run(p+'#'+in)` instead of `run(p,in)`.
- That’s the kind of trick we used to get multiple inputs into a Turing machine: recall `linearAdd(101#1)`.
- Instead, we’ll relax our definitions, allowing recognition and decision methods to take more than one `String` parameter.
- So `run` is a recognition (but not a decision) method.
Outline

• 18.1 Decision and Recognition Methods
• 18.2 The Language L_u
• 18.3 The Halting Problems
• 18.4 Reductions Proving a Language Is Recursive
• 18.5 Reductions Proving a Language is Not Recursive
• 18.6 Rice's Theorem
• 18.7 Enumerators
• 18.8 Recursively Enumerable Languages
• 18.9 Languages That Are Not RE
• 18.10 Language Classifications Revisited
• 18.11 Grammars and Computability
• 18.12 Oracles
• 18.13 Mathematical Uncomputabilities
The Perils Of Infinite Computation

int j = 0;
for (int i = 0; i < 100; j++) {
 j += f(i);
}

• You run a program, and wait... and wait...
• You ask, “Is this stuck in an infinite loop, or is it just taking a long time?”
• No sure way for a person to answer such questions
• No sure way for a computer to find the answer for you...
The Language L_u

- $L(\text{run}) = \{(p,\text{in}) \mid p \text{ is a recognition method and } \text{in} \in L(p)\}$
- A corresponding language for universal TMs: $\{m\#x \mid m \text{ encodes a TM and } x \text{ is a string it accepts}\}$
- In either case, we’ll call the language L_u
- (Remember u for universal)
- We have a recognition method for it, so we know L_u is RE
- Is it recursive?
Is L_u Recursive?

• That is, is it possible to write a decision method with this specification:

```java
/**
 * shortcut(p,in) returns true if run(p,in) would return true, and returns false if run(p,in) would return false or run forever.
 */
boolean shortcut(String p, String in) {
    ...
}
```

• Just like the `run` method, but does not run forever, even when `run(p,in)` would
Example

• For example, the **shortcut** in this fragment:

```java
String x =
    "boolean anbncn1(String p) {
        String as = ", bs = ", cs = ";
        while (true) {
            String s = as+bs+cs;
            if (p.equals(s)) return true;
            as += 'a'; bs += 'b'; cs += 'c';
        }
    }
shortcut(x,"abbc")
```

• It would return false, even though `anbncn1("in")` would run forever
Is This Possible?

• Presumably, **shortcut** would have to simulate the input program as **run** does
• But it would have to detect infinite loops
• Some are easy enough to detect:
  ```
  while(true) {}
  ```
• A program might even be clever enough to reason about the nontermination of **anbncn1**
• It would be very useful to have a debugging tool that could reliably alert you to infinite computations
The Bad News

- No such shortcut method exists
- Tricky to prove such things; it is not enough to say we tried really hard but couldn’t do it
- Our proof is by contradiction
- Assume by way of contradiction that L_u is recursive, so some implementation of shortcut exists
- Then we could use it to implement this…
nonSelfAccepting

/**
 * nonSelfAccepting(p) returns false if run(p,p)
 * would return true, and returns true if run(p,p)
 * would return false or run forever.
 */

boolean nonSelfAccepting(String p) {
 return !shortcut(p,p);
}

• This determines what the given program would decide, given itself as input
• Then it returns the opposite
• So $L(\text{nonSelfAccepting})$ is the set of recognition methods that do not accept themselves
nonSelfAccepting Example

```java
nonSelfAccepting(
    "boolean sigmaStar(String p) {return true;};"
);
```

- `sigmaStar("boolean sigmaStar...")` returns true: `sigmaStar` accepts everything, so it certainly accepts itself
- So it is self-accepting, and `nonSelfAccepting` returns false
nonSelfAccepting Example

```java
nonSelfAccepting(
    "boolean ax(String p) {
      " +
    " return (p.length()>0 && p.charAt(0)=='a'); " +
    "}
)"
);
```

- `ax("boolean ax...")` returns false: `ax` accepts everything starting with `a`, but its own source code starts with `b`
- So it is not self-accepting, and `nonSelfAccepting` returns true
Back to the Proof

- We assumed by way of contradiction that `shortcut` could be implemented.
- Using it, we showed an implementation of `nonSelfAccepting`.
- Now comes the tricky part: what happens if we call `nonSelfAccepting`, giving it itself as input?
- We can easily arrange to do this:
Does nonSelfAccepting Accept Itself?

```java
nonSelfAccepting(
    "boolean nonSelfAccepting(p) { " +
    "    return !shortcut(p,p); " +
    "  }
"
)
```

- All possible results are contradictory:
 - If it accepts itself, that means `shortcut` determined it was not self-accepting
 - If it rejects itself, that means `shortcut` determined it was self-accepting
 - But it must return something, because `shortcut` is a decision method

Formal Language, chapter 18, slide 27
Proof Summary

• We assumed by way of contradiction that shortcut could be implemented
• Using it, we showed an implementation of nonSelfAccepting
• We showed that applying nonSelfAccepting to itself results in a contradiction
• By contradiction, no program satisfying the specifications of shortcut exists
• In other words…
Theorem 18.2

\(L_u \) is not recursive.

- Our first example of a problem that is outside the borders of computability:
 - \(L_u \) is not \textit{recursive}
 - The \textit{shortcut} function is not \textit{computable}
 - The machine-\(M \)-accepts-string-\(x \) property is not \textit{decidable}
- No total TM can be a universal TM
- Verifies our earlier claim that total TMs are weaker than general TMs
Outline

• 18.1 Decision and Recognition Methods
• 18.2 The Language L_u
• **18.3 The Halting Problems**
• 18.4 Reductions Proving a Language Is Recursive
• 18.5 Reductions Proving a Language is Not Recursive
• 18.6 Rice's Theorem
• 18.7 Enumerators
• 18.8 Recursively Enumerable Languages
• 18.9 Languages That Are Not RE
• 18.10 Language Classifications Revisited
• 18.11 Grammars and Computability
• 18.12 Oracles
• 18.13 Mathematical Uncomputabilities
The Power of Self-Reference

• *This sentence is false*
• Easy to do in English
 – A sentence can refer to itself as “this sentence”
• Fairly easy to do with computational procedures:
 – A method can receive its source as a parameter
 – A TM can get a string encoding of itself
• Not a big stretch for modern programmers
• Self-reference is the key trick in our proof that L_u is not recursive
Another Example

- Consider this recognition method:

```java
/**
 * haltsRE(p,in) returns true if run(p,in) halts.
 * It just runs forever if run(p,in) runs forever.
 */
boolean haltsRE(String p, String in) {
    run(p,in);
    return true;
}
```

- It defines an RE language...
The Language L_h

- $L(\text{haltsRE}) = \{(p,in) \mid p \text{ is a recognition method that halts on } in\}$
- A corresponding language for universal TMs: \{m#x \mid m \text{ encodes a TM that halts on } x\}
- In either case, we’ll call the language L_h
- (Remember h for halting)
- We have a recognition method for it, so we know L_h is RE
- Is it recursive?
Is L_h Recursive?

• That is, is it possible to write a *decision* method with this specification:

```java
/**
 * halts(p,in) returns true if run(p,in) halts, and
 * returns false if run(p,in) runs forever.
 */
boolean halts(String p, String in) {
    ...
}
```

• Just like the `haltsRE` method, but does not run forever, even when `run(p,in)` would
More Bad News

• From our results about L_u you might guess that L_h is not going to be recursive either
• Intuitively, the only way to tell what p will do when run on n is to simulate it
• If that runs forever, we won’t get an answer
• But how do we know there isn’t some other way of determining whether p halts, a way that doesn’t involve actually running it?
• Proof is by contradiction: assume L_h is recursive, so an implementation of halts exists
• The we can use it to implement…
narcissist

/**
 * narcissist(p) returns true if run(p,p) would run forever, and runs forever if run(p,p) would halt.
 */

boolean narcissist(String p) {
 if (halts(p,p)) while(true) {}
 else return true;
}

• This halts (returning true) if and only if program \(p \) will contemplate itself forever
• So \(L(\text{narcissist}) \) is the set of recognition methods that run forever, given themselves as input
Back to the Proof

• We assumed by way of contradiction that \texttt{halts} could be implemented
• Using it, we showed an implementation of \texttt{narcissist}
• Now comes the tricky part: what happens if we call \texttt{narcissist}, giving it itself as input?
• We can easily arrange to do this:
Is narcissist a Narcissist?

narcissist(
 "boolean narcissist(p) { " +
 " if (halts(p,p)) while(true) {} " +
 " else return true; " +
 "} " +
)

- All possible results are contradictory:
 - If it runs forever, that means halts determined it would halt
 - If it halts, that means halts determined it would run forever
Proof Summary

• We assumed by way of contradiction that `halts` could be implemented
• Using it, we showed an implementation of `narcissist`
• We showed that applying `narcissist` to itself results in a contradiction
• By contradiction, no program satisfying the specifications of `halts` exists
• In other words…
Theorem 18.3

L_h is not recursive.

- A classic undecidable problem: a *halting problem*
- Many variations:
 - Does a program halt on a given input?
 - Does it halt on any input?
 - Does it halt on every input?
- It would be nice to have a program that could check over your code and warn you about all possible infinite loops
- Unfortunately, it is impossible: the halting problem in all these variations, is undecidable
The Picture So Far

- The non-recursive languages don't stop there
- There are uncountably many languages beyond the computability border
Outline

• 18.1 Decision and Recognition Methods
• 18.2 The Language L_u
• 18.3 The Halting Problems
• 18.4 Reductions Proving a Language Is Recursive
• 18.5 Reductions Proving a Language is Not Recursive
• 18.6 Rice's Theorem
• 18.7 Enumerators
• 18.8 Recursively Enumerable Languages
• 18.9 Languages That Are Not RE
• 18.10 Language Classifications Revisited
• 18.11 Grammars and Computability
• 18.12 Oracles
• 18.13 Mathematical Uncomputabilities
Planning A Trip

• You formulate a plan:
 1. I will drive my car to the airport
 2. I will fly to my friend’s airport
 3. My friend will pick me up
• Steps 1 and 3 are clearly possible, so that just leaves step 2
• You have reduced an original problem A (making a trip from house to house) to another problem B (finding a flight from airport to airport)
• If you can get a flight, you can make the trip
What The Reduction Shows

• Reducing A to B shows that A is no harder than B
• It does not rule out the possibility that A is easier than B: there might be other ways to solve it
• For example, if you and your friend are in the same city, your plan will work, but is not optimal
Algorithmic Reductions

- Given problem A, a *reduction* is a solution of this form:
 1. Convert the instance of problem A into an instance of problem B
 2. Solve that instance of problem B
 3. Convert the solution of the instance of problem B back into a solution of the original instance of problem A

- If steps 1 and 3 are no harder than step 2, we can conclude that problem A is no harder than problem B

 (Still, A might be easier than B; there might be an easier, completely different algorithm)
Reductions Proving a Language Is Recursive

• Given a language L_1, we can use a reduction to prove it is recursive:
 1. Given a string x_1 to be tested for membership in L_1, convert it into another string x_2 to be tested for membership in L_2
 2. Decide whether $x_2 \in L_2$
 3. Convert that decision about x_2 back into a decision about x_1

• If steps 1 and 3 are computable—if those conversions can be computed effectively, without infinite looping—and if L_2 is already known to be recursive, this proves that L_1 is recursive too
Example

boolean decideL1(String x1) {
 String x2="";
 for (int i = 0; i < x1.length(); i++) {
 char ith = x1.charAt(i);
 if (ith=='d') x2+='c';
 else x2+=ith;
 }
 boolean b = anbncn2(x2); // Step 2
 return !b; // Step 3
}

$L_1 = \{ x \in \{a,b,d\}^* \mid x \notin \{a^n b^n d^n\} \}$ by reduction to $L_2 = \{a^n b^n c^n\}$
Example

boolean anbn(String x1) {
 String x2=x1;
 for (int i = 0; i < x1.length()/2; i++)
 x2+="c";
 boolean b = anbncn2(x2);
 return b;
}

$L_1 = \{a^n b^n\}$ by reduction to $L_2 = \{a^n b^n c^n\}$

(Obviously, there’s a more efficient way!)
Outline

• 18.1 Decision and Recognition Methods
• 18.2 The Language L_u
• 18.3 The Halting Problems
• 18.4 Reductions Proving a Language Is Recursive
• 18.5 Reductions Proving a Language is Not Recursive
• 18.6 Rice's Theorem
• 18.7 Enumerators
• 18.8 Recursively Enumerable Languages
• 18.9 Languages That Are Not RE
• 18.10 Language Classifications Revisited
• 18.11 Grammars and Computability
• 18.12 Oracles
• 18.13 Mathematical Uncomputabilities
The Other Direction

• A reduction from A to B shows that A is no harder than B
• Equivalently: B is no easier than A
• Useful to show a language L_1 is not recursive
• Reduce from a nonrecursive language L_2 to the language L_1
• Then you can conclude L_1 is not recursive either, since it is no easier than L_2
Example: L_e

- $L_e = \{ p \mid p$ is a recognition method that never returns true$\}$
- In other words, L_e is the set of recognition methods p for which $L(p) = {}$
- (Remember e for empty)
- We will show that L_e is not recursive
- Proof is by reduction from L_h (a language we already know is nonrecursive) to L_e
Theorem 18.5.1

L_e is not recursive.

- Proof is by reduction from the halting problem
- Assume by way of contradiction that L_e is recursive
- Then there is a decision method `empty` for it
- We can write a decision method `halts`...
boolean halts(String p, String x) {
 String x2 =
 "boolean f(String z) {
 " +
 " run(""+p+"",""+x+"\"); " +
 " return true; " +
 "}"
 ";
 boolean b = empty(x2);
 return !b;
}

- x2 is the source for a recognition method f
- f ignores parameter z, runs p on x, then returns true
- If p runs forever on x, \(L(f) = \{\} \); if not, \(L(f) = \Sigma^* \)
- Thus, \(x2 \in L_e \) if and only if p runs forever on x
- So if empty is a decision method for \(L_e \), halts is a decision method for \(L_h \)
- That's a contradiction: \(L_h \) is not recursive
Theorem 18.5.1, Summary

L_e is not recursive.

- Proof is by reduction from the halting problem
- Assume by way of contradiction that L_e is recursive
- Then there is a decision method `empty` for it
- We can write a method `halts`, as on the previous slide, that is a decision method for L_h
- That's a contradiction: L_h is not recursive
- By contradiction, L_e is not recursive
Example: L_r

- $L_r = \{ p \mid p$ is a recognition method and $L(p)$ is regular $\}$
- For example, this string is in L_r, because Σ^* is regular:

  ```java
  boolean sigmaStar(String p) {return true;}
  ```
- But our previous decision method $a^n b^n$ is not in L_r, because $\{a^n b^n\}$ is not regular
- (Remember r for regular)
- We will show that L_r is not recursive
- Proof is by reduction from L_h (a language we already know is nonrecursive) to L_r
Theorem 18.5.2

L_r is not recursive.

- Proof is by reduction from the halting problem
- Assume by way of contradiction that L_r is recursive
- Then there is a decision method regular for it
- We can write a decision method halts...
boolean halts(String p, String x) {
 String x2 =
 "boolean f(String z) {
 " +
 " run("+p+"\", "+x+"\") ; " +
 " return anbn(z) ; " +
 "} ";
 boolean b = regular(x2);
 return !b;
}

• x2 is the source for a recognition method f
• f runs p on x, returns true if and only if z ∈ \{a^nb^n\}
• If p runs forever on x, L(f) = \{\}; if not, L(f) = \{a^nb^n\}
• Thus, x2 ∈ L_r if and only if p runs forever on x
• So if regular is a decision method for L_r, halts is a decision method for L_h
Theorem 18.5.2, Summary

L_r is not recursive.

- Proof is by reduction from the halting problem
- Assume by way of contradiction that L_r is recursive
- Then there is a decision method recursive for it
- We can write a method halts, as on the previous slide, that is a decision method for L_h
- That’s a contradiction: L_h is not recursive
- By contradiction, L_r is not recursive
Outline

• 18.1 Decision and Recognition Methods
• 18.2 The Language L_u
• 18.3 The Halting Problems
• 18.4 Reductions Proving a Language Is Recursive
• 18.5 Reductions Proving a Language is Not Recursive
• **18.6 Rice's Theorem**
• 18.7 Enumerators
• 18.8 Recursively Enumerable Languages
• 18.9 Languages That Are Not RE
• 18.10 Language Classifications Revisited
• 18.11 Grammars and Computability
• 18.12 Oracles
• 18.13 Mathematical Uncomputabilities
Theorem 18.6: Rice’s Theorem

For all nontrivial properties α, the language
\[
\{p | p \text{ is a recognition method and } L(p) \text{ has property } \alpha\}
\]
is not recursive.

- To put it another way: all nontrivial properties of the RE languages are undecidable
- Some examples of languages covered by the Rice’s Theorem…
Rice’s Theorem Examples

\[L_e = \{ \mathcal{P} \mid \mathcal{P} \text{ is a recognition method and } L(\mathcal{P}) \text{ is empty} \} \]

\[L_r = \begin{align*}
\{ \mathcal{P} \mid \mathcal{P} \text{ is a recognition method and } & L(\mathcal{P}) \text{ is regular} \} \\
\{ \mathcal{P} \mid \mathcal{P} \text{ is a recognition method and } & L(\mathcal{P}) \text{ is context free} \} \\
\{ \mathcal{P} \mid \mathcal{P} \text{ is a recognition method and } & L(\mathcal{P}) \text{ is recursive} \} \\
\{ \mathcal{P} \mid \mathcal{P} \text{ is a recognition method and } & |L(\mathcal{P})| = 1 \} \\
\{ \mathcal{P} \mid \mathcal{P} \text{ is a recognition method and } & |L(\mathcal{P})| \geq 100 \} \\
\{ \mathcal{P} \mid \mathcal{P} \text{ is a recognition method and } & \text{hello } \in L(\mathcal{P}) \} \\
\{ \mathcal{P} \mid \mathcal{P} \text{ is a recognition method and } & L(\mathcal{P}) = \Sigma^* \}
\end{align*} \]
What “Nontrivial” Means

• A property is *trivial* if no RE languages have it, or if all RE languages have it.
• Rice’s theorem does not apply to trivial properties such as these:

\[
\{ p \mid p \text{ is a recognition method and } L(p) \text{ is RE} \}
\]
\[
\{ p \mid p \text{ is a recognition method and } L(p) \supseteq \Sigma^* \}
\]
Proving Rice’s Theorem

For all nontrivial properties α, the language
$$\{ p \mid p \text{ is a recognition method and } L(p) \text{ has property } \alpha \}$$
is not recursive.

- Proof is by reduction from the halting problem
- Given any nontrivial property α of the RE languages, define $A = \{ p \mid p \text{ is a recognition method and } L(p) \text{ has property } \alpha \}$
- Assume by way of contradiction that A is recursive
- Then there is a decision method falpha for it
- We can use it to write a decision method halts
- Two cases to consider: either $\{}$ has property α or it doesn’t
```java
boolean halts(String p, String x) {
    String x2 =
        "boolean f(String z) {
          " +
        "  run(""+p+"\", ""+x+"\") ; " +
        "  return fy(z) ; " +
        "} ");"
    boolean b = falpha(x2);
    return !b;
}
```

- Case 1: $\{\}$ has property α
- Because α is nontrivial, some RE language Y does not have it
- x_2 is the source for a recognition method f
- f runs p on x, then returns true if and only if $z \in Y$
- If p runs forever on x, $L(f) = \{\}$; if not, $L(f) = Y$
- Thus, $x_2 \in A$ if and only if p runs forever on x
- So if falpha is a decision method for A, halts is a decision method for L_h

Formal Language, chapter 18, slide 64
boolean halts(String p, String x) {
 String x2 =
 "boolean f(String z) {
 " +
 " run(""+p+"",""+x+"""); " +
 " return fy(z); " +
 "}"); " +
 boolean b = falpha(x2);
 return b;
}

- Case 2: {} does not have property α
- Because α is nontrivial, some RE language Y does have it
- $x2$ is the source for a recognition method f
- f runs p on x, then returns true if and only if $z \in Y$
- If p runs forever on x, $L(f) = \{}$; if not, $L(f) = Y$
- Thus, $x2 \in A$ if and only if p halts on x
- So if falpha is a decision method for A, halts is a decision method for L_h
Proving Rice’s Theorem

For all nontrivial properties α, the language
\[
\{ p \mid p \text{ is a recognition method and } L(p) \text{ has property } \alpha \}
\]
is not recursive.

- Proof is by reduction from the halting problem
- Given any nontrivial property α of the RE languages, define $A = \{ p \mid p \text{ is a recognition method and } L(p) \text{ has property } \alpha \}$
- Assume by way of contradiction that A is recursive
- Then there is a decision method f_{α} for it
- Two cases to consider: either \emptyset has property α or it doesn’t
- Either way, we can write a method halts, as on the previous slides, that is a decision method for L_h
- That’s a contradiction: L_h is not recursive
- By contradiction, A is not recursive
Using Rice’s Theorem

• Easy to use, when it applies
• Example:
 \(\{ p \mid p \text{ is a recognition method and } |L(p)| = 1 \} \)
• To prove this is not recursive:
 – The language is of the form covered by Rice’s theorem
 – The property in question, \(|L(p)| = 1 \), is nontrivial: some RE languages have one element and others don’t
Guidance: Nonrecursive

- Sets of programs (or TMs, etc.) defined in terms of their runtime behavior are usually not recursive.
- Of course, when Rice’s theorem applies, such a language is definitely not recursive.
- And such languages are usually not recursive, even if we can’t use Rice’s theorem:
 - \{p | p is a method that prints "hello world"\}
 - \{p | p is a method that never gets an uncaught exception\}
 - \{p | p is a method that produces no output\}
Guidance: Recursive

• Sets of programs (or TMs, etc.) defined in terms of their syntax are usually recursive:
 – \{p \mid p \text{ contains the statement } \text{while(true)} \{\} \}
 – \{m \mid m \text{ encodes a TM } M \text{ with 10 states} \}
Caution

- This is just guidance: it is possible to construct exceptions either way
- For example: \(\{ (p, x) \mid p \text{ is a method that executes at least 10 statements when run with input } x \} \)
- Just start simulating \(p \) on \(x \) and count the number of statements executed:
 - If \(p \) returns before you get to 10, say no
 - If \(p \) gets to 10, say yes
- Either way, we get an answer; no infinite loops
- Although defined in terms of runtime behavior, this language is recursive
Outline

• 18.1 Decision and Recognition Methods
• 18.2 The Language L_u
• 18.3 The Halting Problems
• 18.4 Reductions Proving a Language Is Recursive
• 18.5 Reductions Proving a Language is Not Recursive
• 18.6 Rice's Theorem
• 18.7 Enumerators
• 18.8 Recursively Enumerable Languages
• 18.9 Languages That Are Not RE
• 18.10 Language Classifications Revisited
• 18.11 Grammars and Computability
• 18.12 Oracles
• 18.13 Mathematical Uncomputabilities
TMs That Enumerate

- We have treated TMs as recognition machines
- Alan Turing’s original concept (1936) treated them as *enumerators*: they take no input, but simply generate a sequence of strings on an output tape
- Another way of defining languages:
 - \(L(M) = \{x \mid \text{for some } i, x \text{ is the } i\text{th string in } M's \text{ output} \} \)
- Like all TMs, enumerators may run forever
- They must, if the language they enumerate is infinite
- They may, even if the language is finite
Enumerator Objects

- An *enumerator class* is a class with an instance method `next` that takes no input and returns a string (or runs forever)
- An enumerator object may preserve state across calls of `next`
- So `next` may (and generally does) return a different string every time it is called
- For an enumerator class `C`, $L(C)$ is the set of strings returned by an infinite sequence of calls to the `next` method of an object of class `C`
\[L(\text{AStar}) = \{a\}^* \]

```java
class AStar {
    int n = 0;

    String next() {
        String s = "";
        for (int i = 0; i < n; i++) s += 'a';
        n++;
        return s;
    }
}
```

- This enumerates in order of length
- Enumerators don’t have to do that
\textit{L(TwinPrimes)}

class TwinPrimes {
 int i = 1;

 String next() {
 while (true) {
 i++;
 if (isPrime(i) && isPrime(i+2))
 return i + "," + (i+2);
 }
 }
}

- Enumerates twin primes: "3,5", "5,7", "11,13", ...
- It is not known whether \textit{L(TwinPrimes)} is infinite
- If not, there is a largest pair, and a call to \texttt{next} after that largest pair has been returned will run forever
An Enumerator Problem

• Make an enumerator class for the set of all pairs of natural numbers, \(\{(j,k) \mid j \geq 0, k \geq 0\} \)
• (As always, we’ll use decimal strings)
• This is a bit trickier…
NatPairs Failures

class BadNatPairs1 {
 int k = 0;
 String next() {
 return "(0," + k++ + ")";
 }
}

class BadNatPairs2 {
 int j = 0;
 int k = 0;
 String next() {
 return "(" + j++ + "," + k++ + ")";
 }
}
class NatPairs {
 int n = 0;
 int j = 0;

 String next() {
 String s = "(" + j + "," + (n-j) + ")";
 if (j<n) j++;
 else {j=0; n++;
 return s;
 }
}

Formal Language, chapter 18, slide 78
An Easier Enumerator Problem

- Make a class `SigmaStar` that enumerates \(\Sigma^* \)
- For example, if \(\Sigma = \{a, b\} \), a `SigmaStar` object might produce "", "a", "b", "aa", "ab", "ba", "bb", "aaa", ...
- Exact order does not matter here
- Not difficult ... left as an exercise
Numbering A Language

- We can number the strings in a language by the order in which they are enumerated.
- For example, the \(i \)th string from \(\text{SigmaStar} \):

  ```java
  String sigmaStarIth(int i) {
      SigmaStar e = new SigmaStar();
      String s = "";
      for (int j = 0; j<=i; j++) s = e.next();
      return s;
  }
  ```

- Not necessarily one-to-one, but for every \(s \in \Sigma^* \) there is at least one \(i \) such that \(\text{sigmaStarIth}(i) = s \)
Outline

• 18.1 Decision and Recognition Methods
• 18.2 The Language L_u
• 18.3 The Halting Problems
• 18.4 Reductions Proving a Language Is Recursive
• 18.5 Reductions Proving a Language is Not Recursive
• 18.6 Rice's Theorem
• 18.7 Enumerators
• 18.8 Recursively Enumerable Languages
• 18.9 Languages That Are Not RE
• 18.10 Language Classifications Revisited
• 18.11 Grammars and Comnputability
• 18.12 Oracles
• 18.13 Mathematical Uncomputabilities
Theorem 18.8

A language is RE if and only if it is $L(M)$ for some enumeration machine M.

- Our definition of RE used our interpretation of TMs as recognition machines
- So the theorem says there is a recognition machine for L if and only if there is an enumeration machine for L
- To show it, we will give two constructions:
 - Given an enumerator class, construct a recognition method
 - Given a recognition method, construct an enumerator class
Enumerator To Recognizer

boolean aRecognize(String s) {
 AEnumerate e = new AEnumerate();
 while (true)
 if (s.equals(e.next())) return true;
}

• A recognition (not decision) method
• aRecognize(s) returns true if and only if AEnumerate eventually produces s
• So \(L(a\text{Recognize}) = L(A\text{Enumerate}) \)
A More Difficult Direction

```
class BadAEnumerate {
    SigmaStar e = new SigmaStar();

    String next() {
        while (true) {
            String s = e.next();
            if (aRecognize(s)) return s;
        }
    }
}
```

- Only works if `aRecognize` is a decision method
- If `aRecognize` runs forever on one of the strings generated by `SigmaStar`, `next` will get stuck
- We need a trick…
runLimited

- A time-limited version of run
- Recall that \(\text{run}(p, in) \) runs recognition method \(p \) on input \(in \) and returns the result
- \(\text{runWithTimeLimit}(p, in, j) \) returns true if and only if \(p \) returns true for \(in \) within \(j \) steps of the simulation
- This can be total, because it can return false as soon as the \(j \)th step has passed
Recognizer To Enumerator

\begin{verbatim}
class AEnumerate {
 NatPairs e = new NatPairs();

 String next() {
 while (true) {
 int (j,k) = e.next();
 String s = sigmaStarIth(j);
 if (runWithTimeLimit(aRecognize,s,k)) return s;
 }
 }
}

- \(s \in L(a\text{Recognize}) \) if and only if \(s \) is the \(j \)th string in \(\Sigma^* \) and is accepted within \(k \) steps, for some pair \((j,k) \)
- So \(L(a\text{Recognize}) = L(A\text{Enumerate}) \)
\end{verbatim}
A language is RE if and only if it is $L(M)$ for some enumeration machine M.

- Our definition of RE used our interpretation of TMs as recognition machines.
- So the theorem says there is a recognition machine for L if and only if there is an enumeration machine for L.
- We showed it using two constructions:
 - Given an enumerator class, construct a recognition method.
 - Given a recognition method, construct an enumerator class.
- The name “recursively enumerable” makes more sense in this light!
Outline

• 18.1 Decision and Recognition Methods
• 18.2 The Language L_u
• 18.3 The Halting Problems
• 18.4 Reductions Proving a Language Is Recursive
• 18.5 Reductions Proving a Language is Not Recursive
• 18.6 Rice's Theorem
• 18.7 Enumerators
• 18.8 Recursively Enumerable Languages
• **18.9 Languages That Are Not RE**
• 18.10 Language Classifications Revisited
• 18.11 Grammars and Computability
• 18.12 Oracles
• 18.13 Mathematical Uncomputabilities
Languages That Are Not RE

• We’ve seen examples of nonrecursive languages like L_h and L_u
• Although not recursive, they are still RE: they can be defined using recognition methods (but not using decision methods)
• Are there languages that are not even RE?
• Yes, and they are easy to find…
Theorem 18.9

If a language is RE but not recursive, its complement is not RE.

- Proof is by contradiction
- Let \(L \) be any language that is RE but not recursive
- Assume by way of contradiction that the complement of \(L \) is also RE
- Then both \(L \) and its complement have recognition methods; call them \(\text{lrec} \) and \(\text{lbar} \)
- We can use them to implement a decision method for \(L \)…
Theorem 18.9, Continued

If a language is RE but not recursive, its complement is not RE.

```java
boolean ldec(String s) {
    for (int j = 1; ; j++) {
        if (runLimited(lrec,s,j)) return true;
        if (runLimited(lbar,s,j)) return false;
    }
}
```

- For some j, one of the two `runLimited` calls must return true
- So this is a decision method for L
- This is a contradiction; L is not recursive
- By contradiction, the complement of L is not RE
Closure Properties

- So the RE languages are not closed for complement
- But the recursive languages are
- Given a decision method l_{dec} for L, we can construct a decision method for L’s complement:

  ```java
  boolean lbar(String s) { return !ldec(s); }
  ```
- That approach does not work for nonrecursive RE languages
- If the recognition method $l_{rec}(s)$ runs forever, $! l_{rec}(s)$ will too
Examples

- \(L_h \) and \(L_u \) are RE but not recursive
- By Theorem 18.9, their complements are not RE:

 \[
 \overline{L_u} = \{ (p, s) \mid p \text{ is not a recognition method that returns true for } s \}
 \]

 \[
 \overline{L_h} = \{ (p, s) \mid p \text{ is not a recognition method that halts given } s \}
 \]

- These languages cannot be defined as \(L(M) \) for any TM \(M \), or with any Turing-equivalent formalism
Outline

- 18.1 Decision and Recognition Methods
- 18.2 The Language L_u
- 18.3 The Halting Problems
- 18.4 Reductions Proving a Language Is Recursive
- 18.5 Reductions Proving a Language is Not Recursive
- 18.6 Rice's Theorem
- 18.7 Enumerators
- 18.8 Recursively Enumerable Languages
- 18.9 Languages That Are Not RE
- **18.10 Language Classifications Revisited**
- 18.11 Grammars and Computability
- 18.12 Oracles
- 18.13 Mathematical Uncomputabilities
The Big Picture

Formal Language, chapter 18, slide 95
Recursive

• When a language is *recursive*, there is an effective computational procedure that can definitely categorize all strings
 – Given a positive example it will decide yes
 – Given a negative example it will decide no
• A language that is *recursive*, a property that is *decidable*, a function that is *computable*
• All these terms refer to total-TM-style computations, computations that always halt
RE But Not Recursive

• There is a computational procedure that can effectively categorize positive examples:
 – Given a positive example it will decide yes
 – Given a negative example it may decide no, or may run forever

• A property like this is called semi-decidable

• Like the property of \((p,s) \in L_h\)
 – If \(p\) halts on \(s\), a simulation can answer yes
 – If not, neither simulation nor any other approach can always answer with a definite no
Not RE

• There is no computational procedure for categorizing strings that gives a definite yes answer on all positive examples
• Consider \((p, s) \in L_h\)
• One kind of positive example would be a recognition method \(p\) that runs forever on \(s\)
• But there is no algorithm to identify such pairs
• Obviously, you can’t simulate \(p\) on \(s\), see if it runs forever, and then say yes
Outline

• 18.1 Decision and Recognition Methods
• 18.2 The Language L_u
• 18.3 The Halting Problems
• 18.4 Reductions Proving a Language Is Recursive
• 18.5 Reductions Proving a Language is Not Recursive
• 18.6 Rice's Theorem
• 18.7 Enumerators
• 18.8 Recursively Enumerable Languages
• 18.9 Languages That Are Not RE
• 18.10 Language Classifications Revisited
• 18.11 Grammars and Computability
• 18.12 Oracles
• 18.13 Mathematical Uncomputabilities
General Grammars

• We defined grammars using general productions of the form $x \rightarrow y$:
 – x and y can be any strings, $x \neq y$

• But our examples have all been context free:
 – Right-hand side x is a single nonterminal symbol

• You can define more languages if you use productions that are not context free
Example: $a^n b^n c^n$

\[
S \rightarrow aBSc \mid abc \mid \epsilon \\
Ba \rightarrow aB \\
Bb \rightarrow bb
\]

- Here are some derivations for this grammar:
 - $S \Rightarrow \epsilon$
 - $S \Rightarrow abc$
 - $S \Rightarrow aBSc \Rightarrow aBabcc \Rightarrow aaBbcc \Rightarrow aabbcc$
 - $S \Rightarrow aBSc \Rightarrow aBaBScc \Rightarrow aBaBabccc \Rightarrow aaBBabccc \Rightarrow aaBaBbccc$
 \Rightarrow aaaBBbccc \Rightarrow aaabbbccc$

- The language generated is $a^n b^n c^n$: recursive but not context-free
Chomsky Hierarchy

• Noam Chomsky, late 1950s
• Four classifications for grammars, determined by the syntax of productions:
 – Type 0 (unrestricted): all forms allowed
 – Type 1 (context sensitive): form $xAz \rightarrow xyz$, where $y \neq \varepsilon$; $S \rightarrow \varepsilon$ is also allowed, if S does not appear on the right-hand side of any production
 – Type 2 (context free)
 – Type 3 (right linear)
Remarkable Correspondence

Type 3 (regular) ⊆ Type 2 (CFL) ⊆ Type 1 (CSL) ⊆ (recursive) ⊆ Type 0 (RE)
The CSLs

• Context-sensitive languages
 – A superset of the CFLs, a subset of the regular languages
 – A large subset: there are languages that are recursive but not context-sensitive, but they’re hard to find

• Another way to define them: nondeterministic linear-bounded automata (NLBA)
 – Start with the NDTM model
 – Add the restriction that writing on B is not permitted
 – In effect, this limits the NDTM to that part of the tape occupied by the input
 – L is accepted by some NLBA if and only if L is a CSL
Uncomputability And CFGs

• We saw Rice’s theorem:

For all nontrivial properties α, the language
\[
\{p \mid p \text{ is a recognition method and } L(p) \text{ has property } \alpha\}
\]

is not recursive.

• There’s nothing as categorical for CFGs

• But there are a number of interesting properties α for which

\[
\{G \mid G \text{ is a CFG and } L(G) \text{ has property } \alpha\}
\]

is not recursive.
Examples

• These languages are not recursive:
 – \{G \mid G \text{ is a CFG and } L(G) = \Sigma^*\}
 – \{G \mid G \text{ is a CFG and } L(G) \text{ is a CFL}\}

• Similarly, these questions are undecidable:
 – Do two given CFGs generate the same language?
 – Is the intersection of the languages defined by two given CFGs a CFL?
Outline

• 18.1 Decision and Recognition Methods
• 18.2 The Language L_u
• 18.3 The Halting Problems
• 18.4 Reductions Proving a Language Is Recursive
• 18.5 Reductions Proving a Language is Not Recursive
• 18.6 Rice's Theorem
• 18.7 Enumerators
• 18.8 Recursively Enumerable Languages
• 18.9 Languages That Are Not RE
• 18.10 Language Classifications Revisited
• 18.11 Grammars and Computability
• **18.12 Oracles**
• 18.13 Mathematical Uncomputabilities
Two languages:
- $L_e = \{ p \mid p$ is a recognition method and $L(p) = \emptyset \}$
- $L_f = \{ p \mid p$ is a recognition method and $L(p) = \Sigma^* \}$

Neither is recursive (by Rice’s theorem)
In fact, neither is RE
Yet there is a sense in which one is harder to recognize than the other…
Reduction From Halting

- We saw that L_h is not recursive:
 - $\{(p, \text{in}) \mid p \text{ is a recognition method that halts on in}\}$

- We showed that L_e is not recursive by reduction from L_h:
 - If there were a way to decide L_e, we could use that to decide L_h
 - Conclusion: L_e must not be recursive

- So no decision method for L_e is possible
- But if we did have some other way of deciding L_e, we could use that to decide L_h as well
Oracle Machines

• TMs with such impossible powers are called oracle machines
• Just like ordinary TMs, but augmented with an oracle: a one-step way of checking membership in a particular language
• Giving a TM an oracle for a nonrecursive language like L_e increases its power
• Given an oracle for L_e, both L_e and L_h are recursive
• With a different construction, you can show that given an oracle for L_h, both L_e and L_h are recursive
Levels Of Impossibility

- An oracle for L_h doesn’t end uncomputability
- It can decide the halting problem, for ordinary TMs, but not for TMs with L_h oracles
- That requires a more powerful oracle, whose addition make the halting problem harder, requiring a still stronger oracle, and so on...
- An infinite hierarchy of oracles
L_e and L_f Revisited

- Two languages:
 - $L_e = \{ p \mid p$ is a recognition method and $L(p) = \{\} \}$
 - $L_f = \{ p \mid p$ is a recognition method and $L(p) = \Sigma^* \}$
- Neither is recursive (by Rice’s theorem)
- In fact, neither is RE
- L_f is harder to recognize than L_e in this sense:
 - An oracle for L_h makes L_e recursive
 - An oracle for L_h does not make L_f recursive; that requires one of the more powerful oracles
Outline

• 18.1 Decision and Recognition Methods
• 18.2 The Language L_u
• 18.3 The Halting Problems
• 18.4 Reductions Proving a Language Is Recursive
• 18.5 Reductions Proving a Language is Not Recursive
• 18.6 Rice's Theorem
• 18.7 Enumerators
• 18.8 Recursively Enumerable Languages
• 18.9 Languages That Are Not RE
• 18.10 Language Classifications Revisited
• 18.11 Grammars and Computability
• 18.12 Oracles
• 18.13 Mathematical Uncomputabilities
Uncomputability In Other Domains

- All our nonrecursive languages have been languages of programs
- Of course, they’re interesting to programmers
- Uncomputability turns up in many other domains
- Especially at the foundations of mathematics…
Formalist View Of Mathematics

- One view: math is a structure of theorems
 - Each built from simpler theorems by mechanically following rules of logic
 - At the bottom are axioms, are accepted as true because they are simple and self-evident

- If you think of mathematics that way, then:
 - It is important for the axioms to be consistent, meaning that they lead to no false theorems
 - And it is important for them to be complete, meaning that all true theorems can be proved
David Hilbert, 1862-1943

• One of the most influential mathematicians in modern history
• Issued a list of 23 open problems at a conference in Paris in 1900
• They guided mathematical research for the century, as he intended
• A solution to any problem on the list has brought fame to the mathematician who solved it
• Most are now “solved”, in a sense
Formalist Goals

- Goals:
 - Prove the foundational axioms are consistent (#2 on the list)
 - Show that they are complete
 - Give an exact procedure to decide the truth of any given assertion
- Hilbert believed that finite proof or disproof was always possible for well-formed mathematical conjectures
- He (and most other mathematicians) believed that these goals were almost within reach
Kurt Gödel, 1906-1978

• Showed how to express “this assertion has no proof” in number theory: a formal mathematical language of simple assertions about natural numbers
 – Such self-reference is easy to do with English, and not hard with computer programs, but very hard in number theory
 – If false, it has a proof: that’s a proof of something false, so the axioms are not consistent
 – If true, it has no proof: that’s a truth that can’t be proved, so the axioms are not complete

• His first incompleteness theorem: no axiomatic system containing number theory can be both consistent and complete
Formalist Goals, Revisited

• Gödel (1929-1931)
 – No axiomatic system containing number theory can be both consistent and complete
 – No consistent system containing number theory can prove its own consistency

• Turing, Church (1936)
 – There can be no algorithm for deciding provability
More Undecidabilities

• Since then, many other mathematical problems have been found to be uncomputable
• Example: solving Diophantine equations
 – Polynomial equations, such as $x^2 + y^2 = z^2$, restricted to integer variables and constants
 – Find a general algorithm for these: Hilbert’s tenth problem
 – Matiyasevich “solved” this one in 1970, showing that it has no solution
 – For every TM M there is a Diophantine equation with one variable x which has a solution exactly where $x \in L(M)$
• As always, close ties between computer science and the foundations of mathematics