
Chapter 20

Procedure Declarations
and Calls

The procedure call is an effective tool for managing the complexity of pro-
gramming problems. A large problem can usually be subdivided into a
number of smaller problems, which are then solved individually. If a team
of programmers is working on a project, this provides a natural way of
dividing the work among the individual programmers. If some of the sub-
problems are still somewhat large, further subdivision may be called for.
This approach is called top-down design. Program derivation is especially
useful in this method, as the specification of the original problem is used
to guide the subdivision in such a way that correct solutions to the smaller
problems provide a correct solution to the larger one.

The proof rules for procedure declarations and calls are most easily
introduced in the context of a simple example. In the procedure inc below,
x is an input (value) parameter, and y is an output (variable) parameter.
What is the result of a call inc(s, t) to the procedure below if s has a
value of 7 before the call?

procedure inc(x : int ; var y : int);
|[y := x + 1]|

If procedure declarations and calls are viewed as a way of expanding
the functionality of a programming language (in particular, GCL), rules
are needed for annotating a procedure call with pre and post conditions.
What would be a valid Hoare triple for the call inc(s, t) to procedure inc
above?

A good first guess would be

{ true } inc(s, t) { t = s + 1 }
However, what would this suggest about the call inc(s, s) ? Also, what

would be the result of such a call if s initially has value 4?
The result, of course, would be that parameter s is increased to 5 by

the procedure, but following the pattern of the first guess at an appropriate

i

ii CHAPTER 20. PROCEDURE DECLARATIONS AND CALLS

Hoare triple would give

{ true } inc(s, s) { s = s + 1 }

This postcondition is equivalent to FALSE , since no state satisfies it.
This somewhat surprising result is caused by a phenomenon called alias-

ing because the two formal parameters x and y both correspond to the
same actual parameter s . Aliasing may also occur in other ways, some
of which greatly complicate the procedure proof rules. As an example,
consider the procedure declaration below.

procedure bump(var x, y : int);
|[x := x + 1 ; y := y + 1 ; z := z + 1]|

Hand trace the sequence of commands below to observe and understand
other types of aliasing.

a, b, z := 5, 10, 15 ; bump(a, b);
a, z := 5, 10 ; bump(a, a);
a, z := 5, 10 ; bump(a, z);
z := 10 ; bump(z, z);

In the first call there is no aliasing. In the second call, the aliasing arises
from one actual parameter a corresponding to the two formal variable pa-
rameters x and y . In the third call, the aliasing arises from the actual
parameter z corresponding to formal variable parameter y while also ap-
pearing as a nonlocal variable in the procedure body. How does aliasing
occur in the fourth call?

In order to keep the proof rule simple, these kinds of aliasing will not
be allowed. In particular, passing the same actual parameter to more than
one formal variable parameters will not be permitted. Also, for the time
being, nonlocal variables will not be permitted.

However, the type of aliasing exhibited in inc(s, s) is benign in the sense
that the output parameter gets the value that is expected. For example, if
s = 8 is true before the call inc(s, s) , then s = 9 is true after the call.

The first part of the proof rule is a specification (pre and post conditions)
for the procedure body in terms of the formal parameters. The second part
consists of rules for substituting the names of actual parameters for their
corresponding formal parameters in that specification.

For example, the first guess above corresponded to the following speci-
fication of the procedure:

procedure inc(x : int ; var y : int);
|[{ pre : true } y := x + 1 { post : y = x + 1 }]|

A straightforward substitution of actuals for formals then leads to the er-
roneous triple:

{ true } inc(s, s) { s = s + 1 }
How may the specification be changed to accommodate the benign type

of aliasing, that is, the type where an actual parameter s corresponds to

20.1. THE PROOF RULE FOR PROCEDURES iii

both a value and a variable formal parameter? How would you convince
someone that, after the procedure call inc(s, s) , variable s has the value
that it should have? After some thought, it may be seen that what is
needed is a way to refer to the value of s (as the input parameter) before
the call. This may be accomplished by introducing a specification constant
C to record the value of s before the call. The appropriate triple would
then be

{ s = C } inc(s, s) { s = C + 1 } . (20.1)

This suggests a specification of the form

procedure inc(x : int ; var y : int);
|[{ pre : x = C } y := x + 1 { post : y = C + 1 }]|

The idea is to forbid references to the value parameters in the postcon-
dition, as their pre-call values may be changed by benign aliasing. This
is accomplished by introducing a specification constant for each value pa-
rameter, and asserting that each value parameter is equal to its respective
constant in the precondition. Then the specification constant may be used
in the postcondition.

With this provision, the call rule is based upon substituting the actual
parameters for the formal parameters. Note that a substitution may also be
necessary to rename the specification constants, as required by the context
of the call. For example, the substitution C := B gives the valid triple

{ s = B } inc(s, t) { t = B + 1 } . (20.2)

The substitution may contain specification constants, program variables,
and literals, as in C := B + z + 5 , which yields the triple

{ s = B + z + 5 } inc(s, t) { t = B + z + 6 } . (20.3)

Such a substitution will be valid as long as the substituted expression (such
as B + z + 5) does not refer to any actual parameter.

20.1 The proof rule for procedures

Consider declarations of the form

procedure f(x ; var y); |[S]|
where S is the procedure body and x, y are formal parameters. Param-
eters x and y should each be thought of as a list of parameters, but
the discussion here will be simplified by treating them as single variables.
Types will be omitted throughout this discussion.

In practice a procedure f is verified with respect to a specification. The
specification consists of a procedure heading (with the list of parameters)
together with a pair pre , post of predicates expressed in terms of the
formal parameters:1

1For readability, pre and post conditions should both appear before lengthy procedure
bodies.

iv CHAPTER 20. PROCEDURE DECLARATIONS AND CALLS

procedure f(x ; var y);
|[{ pre } S { post }]|

For the correctness of the procedure, the proof obligation is

{ pre } S { post } . (20.4)

Then for procedure calls f(a, b) the basic idea is that we can replace the
formal parameters of the specification with the actual parameters of the
procedure call. Recall that actual parameters corresponding to value for-
mal parameters may be expressions, but those corresponding to variable
parameters must be assignable (able to appear on the left side of an assign-
ment).

For the procedure declaration rule we will consider only proper proce-
dure declarations, which are subject to the previously discussed restriction
that no value parameter is mentioned in the postcondition.

Proper Specification
A procedure specification

procedure f(x ; var y); |[{ pre } S { post }]|

is proper provided that post is independent of x .

The procedure declaration rule is then simply

Valid Declaration
A procedure declaration

procedure f(x ; var y); |[{ pre } S { post }]|

is valid provided that the specification is proper and a proof is supplied
for { pre } S { post } .

The call rule is recorded in the box below.

Procedure Call Rule

If f has a valid declaration then

{ pre(x, y := a, b)σ } f(a, b) { post(y := b)σ } (20.5)

for all a, b and all substitutions σ for constants in pre, post , provided
that b contains no variable more than once (recall that a and b are lists
of parameters), and substitution σ does not refer to any parameter.

Exercise 20.0
Show that the following specification of inc is not valid.

20.1. THE PROOF RULE FOR PROCEDURES v

procedure inc(x : int ; var y : int);
|[{ pre : true } y := x + 1 { post : y = x + 1 }]|

Exercise 20.1
Show that the following declaration of inc is valid.

procedure inc(x : int ; var y : int);
|[{ pre : x = C } y := x + 1 { post : y = C + 1 }]|

As another example, the valid specification

procedure swap(var x, y);
|[{ x = X ∧ y = Y } x, y := y, x { x = Y ∧ y = X }]|

gives (using (X,Y := A,B) for σ)

{ a = A ∧ Y = B } swap(a, b) { a = B ∧ b = A } . (20.6)

Also (using (X,Y := 7 ∗A, T + 1) for σ)

{ a = 7 ∗A ∧ b = T + 1 } swap(a, b) { a = T + 1 ∧ b = 7 ∗A } . (20.7)

The rule of independence discussed in Chapter 7 is frequently used in
the context of a procedure call. What should it mean for a procedure call
f(a, b) to be independent of a predicate R ? In Chapter 7, a command
S is independent of a predicate R if S does not assign to any of the
variables of R . For a procedure call, the variable parameters correspond
to variables receiving assignments, so f(a, b) is independent of R if R
does not refer to any variable actual parameter of the call f(a, b) . This
rule is recorded in the box below.

Rule of independence
If R is independent of b (recall that b is the list of variable parameters)
and

{ P } f(a, b) {Q }
then

{ P ∧ R } f(a, b) {Q ∧ R } (20.8)

For example, from (??) the rule of independence (with R being s = B)
gives

{ s = B } inc(s, t) { t = B + 1 ∧ s = B } .

but not the erroneous

{ s = B } inc(s, s) { s = B + 1 ∧ s = B } .

since s = B is not independent of the actual variable parameter s
Now, any of the programs derived earlier in the text may be converted

into a procedure just by determining the parameters and local variables, and
introducing specification constants for the value parameters. For example,
the following program for selection sort was derived in Chapter 16. All
intermediate assertions have been removed.

vi CHAPTER 20. PROCEDURE DECLARATIONS AND CALLS

|[con N : int ; var h, k, m : int ; a : array[0..N)of int;
{pre : N ≥ 0 ∧ a = A}

h := N ;
do h 6= 0 →

k,m := 0, 1;
do m 6= h →

if a.m > a.k → k := m
[] a.m ≤ a.k → skip
fi
m := m + 1;

od
h, a := h− 1, a(h− 1, k : a.k, a.(h− 1))

od
{post : S.a.0.N ∧ (bag.a.0.N = bag.A.0.N)}

]|

The goal of this algorithm is to sort array a , so a will be a variable
parameter. The other variables h , k , and m will be local variables. Con-
stant N will be global. The procedure is given below; note that there is
no need for specification constants since there are no value parameters.

procedure SelSort(var a : array[0..N)of int);
|[var h, k, m : int;
{pre : N ≥ 0 ∧ a = A}

h := N ;
do h 6= 0 →

k,m := 0, 1;
do m 6= h →

if a.m > a.k → k := m
[] a.m ≤ a.k → skip
fi
m := m + 1;

od
h, a := h− 1, a(h− 1, k : a.k, a.(h− 1))

od
{post : S.a.0.N ∧ (bag.a.0.N = bag.A.0.N)}

]|

In order to illustrate the use of specification constants, suppose that
some subrange a[q..r) of the entire array is to be sorted. This would
require q and r to be passed as value parameters. Then the specification
would appear as below, with essentially the same proof of the procedure
body. The specification constants Q and R are now necessary to represent
the precondition values of value parameters q and r , respectively.

20.2. EXERCISES vii

procedure SelSort(var a : array[0..N)of int ; q, r : int);
|[var h, k, m : int;
{pre : 0 ≤ q ≤ r ≤ N ∧ a = A ∧ q = Q ∧ r = R}

h := r;
do h 6= q →

k,m := q, q + 1;
do m 6= h →

if a.m > a.k → k := m
[] a.m ≤ a.k → skip
fi
m := m + 1;

od
h, a := h− 1, a(h− 1, k : a.k, a.(h− 1))

od
{post : Sort.a.Q.R ∧ bag.a.Q.R = bag.A.Q.R}

]|

20.2 Exercises

Exercise 20.2
Give a proper declaration of a procedure max , which calculates
the maximum of two input integers, and puts the result in an
output integer.

Exercise 20.3
Verify the triple in (??), using the second definition of inc .

Exercise 20.4
Verify the triple in (??), using the second definition of inc .

Exercise 20.5
Verify the triple in (??), using the second definition of inc .

Exercise 20.6
Prove that the specification of procedure swap is valid.

Exercise 20.7
Verify the triple in (??), using the definition of swap given in
the text.

Exercise 20.8
Verify the triple in (??) above, using the definition of swap
given in the text.

Exercise 20.9
Write the Linear Search algorithm of Chapter 16 as a procedure
and provide a valid procedure declaration.

Exercise 20.10
Write the Bounded Linear Search algorithm of Chapter 16 as a
procedure and provide a valid procedure declaration.

viii CHAPTER 20. PROCEDURE DECLARATIONS AND CALLS

Exercise 20.11
Write the Binary Search algorithm of Chapter 16 as a procedure
and provide a valid procedure declaration.

Chapter 23

Recursive Procedures

So far all the procedure derivations derived in this text have been nonre-
cursive ones. In fact, the proof rule given in Chapter 20 for a procedure
declaration is not adequate for a recursive procedure. The difficulty arises
in giving a proof of the body of such a procedure. In particular, at the
point of a recursive call to the procedure, it seems that one must know
the procedure is correct in order to prove that it is correct. As before, a
simple example can help the reader to discover an appropriate proof rule.
Recall from Chapter 17 the integer factorial function, which has a natural
recursive definition.

X! = 1 if X = 0
X! = X ∗ (X − 1)! if X > 0

This definition leads to a recursive procedure definition for factorial.

procedure RecFactorial(x : int ; var z : int);
|[{ pre : 0 ≤ x = X }
if x = 0 → z := 1
[] x > 0 →

RecFactorial(x− 1, z);
z := z ∗ x

fi
{ post : z = X! }

]|
However, it is not obvious how to prove the correctness of this procedure.

Using the runtime stack model of Chapter 17, hand run a procedure call of
the form below.

r := 3 ; RecFactorial(r, s)

Why does s receive a correct value of 6 for this call? Why does the
procedure call terminate? That is, why does the procedure not continue
to call itself indefinitely? What happens the last time the procedure calls
itself?

Right after this last call the runtime stack would look something like
this:

ix

x CHAPTER 23. RECURSIVE PROCEDURES

RecFactorial
x = 0
z =→ z in layer below
resume=

RecFactorial
x = 1
z =→ z in layer below
resume= z := z ∗ x

RecFactorial
x = 2
z= → z in layer below
resume= z := z ∗ x

RecFactorial
x = 3
z =→ s in main
resume= z := z ∗ x

Main
r = 3
s =??
resume= next statement of Main

Now as the procedure body is run at the top layer, since the value of x
is 0, z is assigned 1, and the topmost activation terminates. The z at the
top layer refers indirectly to the z at the layer below, and that one refers
to the one below it, and so on until the z at layer two refers indirectly to s
in the main. Therefore, the assignment z := 1 at the top layer indirectly
assigns 1 to s in the main. This leaves the stack looking as below.

RecFactorial
x = 1
z =→ z in layer below
resume= z := z ∗ x

RecFactorial
x = 2
z =→ z in layer below
resume= z := z ∗ x

RecFactorial
x = 3
z =→ s in main
resume= z := z ∗ x

xi

Main
r = 3
s = 1
resume= next statement of Main

Resuming the run of this activation at z := z ∗ x indirectly assigns
a value of 1*1 to s in the main, and then terminates, leaving the stack
looking as below.

RecFactorial
x = 2
z =→ z in layer below
resume= z := z ∗ x

RecFactorial
x = 3
z =→ s in main
resume= z := z ∗ x

RecFactorial
r = 3
s = 1, 1
resume= next statement of Main

Continuing in this fashion results in s getting a value of 2 for the next
layer, and finally a value of 6, as required.

The notable feature of this process is that each time a recursive call is
made, the problem to be solved is simpler than the initial problem. In this
example, the measure of difficulty, or “size”, of the problem is the value
of parameter x . The idea is that in proving the procedure correct on a
call of arbitrary size K , it may be assumed that every procedure call of
size smaller than K is correct. So in proving the RecFactorial procedure
correct, add conjunct x = K to the precondition. Then x − 1 < K is a
precondition to the recursive call RecFactorial(x− 1, z) , so the call may
be assumed to establish z = (X − 1)! . The annotated procedure would
then appear as follows.

procedure RecFactorial(x : int ; var z : int);
|[{ pre : 0 ≤ x = X }
if x = 0 → { pre ∧ X = 0 } z := 1 { z = X! }
[] x > 0 →

{ 0 ≤ x− 1 = X − 1 ∧ x− 1 < K }
RecFactorial(x− 1, z);
{X > 0 ∧ z = (X − 1)! }

z := x ∗ z
{X > 0 ∧ z = X ∗ (X − 1)! }

fi
{ post : z = X! }

]|

xii CHAPTER 23. RECURSIVE PROCEDURES

23.1 The proof rule for recursive procedures

The factorial example illustrates that the proof rule for procedures is in-
adequate for proving correctness of recursive procedures. What is needed
to prove correctness of a recursive procedure body is an assumption that
“smaller” recursive calls within the body meet the specification. That is,
a measure of the “size” of a call will need to be defined, and any recursive
calls in the body of the procedure having a reduced “size” may be assumed
to meet the specification. This motivates the following rule for recursive
procedures.

Recursion rule
If f has a proper declaration then to show its correctness, i.e.,
{ pre } S { post } , it is sufficient to give a variant function v (of
the value and var parameters and the constants) and to prove

{ v = K ∧ pre } S { post }

(where K is a fresh constant). In that proof, one can assume this “re-
cursive call rule”:

{ (v < K ∧ pre)(x, y := a, b)σ } f(a, b) { post(y := b)σ } (23.1)

for any a, b and substitutions σ for constants in pre, post , provided
that no variable appears more than once in b , and b is disjoint from
the domain and range of σ .

As an example, consider the fibonacci function fib defined for natural
numbers X by

fib.X = X if X = 0 ∨ X = 1
fib.X = fib.(X − 1) + fib.(X − 2) if X > 1

We want a procedure fib satisfying the following specification.

procedure fib(x : int ; var z : int);
|[var w : int;
{ pre : 0 ≤ x = X }
{ variant : x }
{ post : z = fib.X }

]|

The annotated procedure body below satisfies the specification

23.2. A RECURSIVE PROCEDURE FOR BINARY SEARCH xiii

{ pre ∧ x = K }
if x = 0 ∨ x = 1 → {X = 0 ∨ X = 1 } z := 1 { z = fib.X }
[] x > 1 →

{ 0 ≤ X − 1 < K ∧ 0 ≤ X − 2 < K }
fib(x− 1, w);
{ 0 ≤ X − 2 < K ∧ w = fib.(X − 1) }

fib(x− 2, z);
{ 0 ≤ X − 2 ∧ w = fib.(X − 1) ∧ z = fib.(X − 2) }

z := w + z;
{ post : z = fib.X }

fi

Here the recursive call rule is used to establish the two triples

{X − 1 < K ∧ 0 ≤ x− 1 = X − 1 } fib(x− 1, w) { w = fib.(X − 1) }
{X − 2 < K ∧ 0 ≤ x− 1 = X − 1 } fib(x− 2, z) { z = fib.(X − 2) }

and the independence rule is used to carry along established conjuncts.

23.2 A recursive procedure for binary search

It should come as no surprise that the proof rule for recursive procedures
may be used to guide the derivation of recursive procedures. The key idea
is that in deriving the body of a procedure, a specification may arise for
some part of the body which closely resembles the specification for the
procedure itself. If parameter substitutions can be found which make the
inner specification agree with the overall specification, then a recursive call
with these substitutions is appropriate. The only difference between this
and the derivation of an arbitrary procedure call is that a variant function
must be defined for the recursive procedure, and the derived recursive call
must have a smaller variant than that of the procedure. As usual, an
example will help to clarify these ideas.

In the binary search algorithm, a divide-and-conquer strategy is used to
efficiently search an ordered array for a given element. The specification is

|[con N : int{N ≥ 0} ; a : array[0..N)of int;
{ Q : sorted.a[0..N) ∧ (a.0 ≤ x < a.(N − 1)) }

BinSer
{ R : (0 ≤ y < N − 1) ∧ (a.y ≤ x < a.(y + 1)) }

]|

A divide and conquer strategy suggests splitting the range into two (prob-
ably about equal) parts. To that end, let m be any integer such that
0 < m < N − 1 . Note that if there is no such integer then the postcondi-
tion can be satisfied by the assignment y := 0 . If there is such an integer
m , the postcondition may be transformed as follows:

xiv CHAPTER 23. RECURSIVE PROCEDURES

(0 ≤ y < N − 1) ∧ (a.y ≤ x < a.(y + 1))
≡ { 0 < m < N − 1 }

((0 ≤ y < m) ∨ (m ≤ y < N − 1)) ∧ (a.y ≤ x < a.(y + 1))
≡ { distributivity }

((0 ≤ y < m) ∧ (a.y ≤ x < a.(y + 1))) ∨
((m ≤ y < N − 1) ∧ (a.y ≤ x < a.(y + 1)))

≡ { (y < m ⇒ (y + 1) ≤ m) ∧ sorted.a }
((0 ≤ y < m) ∧ (a.y ≤ x < a.(y + 1)) ∧ (x < a.m)) ∨

((m ≤ y < N − 1) ∧ (a.y ≤ x < a.(y + 1)) ∧ (a.m ≤ x))

This disjunction suggests the investigation of a selection

{ Q : sorted.a[o..N) ∧ (a.0 ≤ x < a.(N − 1)) }
if x < a.m →

{ sorted.a[o..m] ∧ (a.0 ≤ x < a.m) }
S0

{ (0 ≤ y < m) ∧ (a.y ≤ x < a.(y + 1)) }
[] a.m ≤ x →

{ sorted.a[m..N − 1] ∧ (a.m ≤ x < a.(N − 1)) }
S1

{ (m ≤ y < N − 1) ∧ (a.y ≤ x < a.(y + 1)) }
fi

{ R : (0 ≤ y < N) ∧ (a.y ≤ x < a.(y + 1)) }

For both S0 and S1 , the specification has the same form as the original
specification, which suggests the definition of a recursive procedure with the
following specification. In order to make the specification of the procedure
proper, we introduce spec constants A , B , T , X , and for convenience of
notation we define two predicates:

Q.a.b.t.x : sorted.a[b..t] ∧ (a.b ≤ x < a.t)
R.a.b.t.x.y : (b ≤ y < t) ∧ (a.y ≤ x < a.(y + 1))

procedure BinSer(in a,b, t,x;out y);
|[a : array[0..N)of int ; b, t, x : int;

{ Q.a.b.t.x ∧ a = A ∧ b = B ∧ t = T ∧ x = X }
S
{ R.A.B.T.X.y }

]|

The procedure body is developed as above. If there is no integer m such
that b < m < t , then the postcondition is satisfied by the assignment
y := b . Otherwise, the calculations above lead us to a selection, giving the
recursive procedure below.

23.2. A RECURSIVE PROCEDURE FOR BINARY SEARCH xv

procedure BinSer(a : array[0..N)of int ; b, t, x : int ; y : int);
|[{ Q.a.b.t.x ∧ a = A ∧ b = B ∧ t = T ∧ x = X }
if b + 1 = t → y := b;
[] b + 1 6= t →

m := (b + t)÷ 2;
if x < a.m →

{ Q.a.b.m.x ∧ a = A ∧ b = B ∧ m = M ∧ x = X }
BinSer(a, b,m, x, y)
{ R.A.B.M.X.y }

[] a.m ≤ x →
{ Q.a.m.t.x ∧ a = A ∧ m = M ∧ t = T ∧ x = X }

BinSer(a, m, t, x, y)
{ R.A.M.T.X.y }

fi
fi
{ R.A.B.T.X.y }

]|

The variant function for this procedure is v = t − b . The annotations
below will guide the reader to a straightforward proof of correctness for the
recursive procedure, using the recursive procedure rule.

procedure BinSer(a : array[0..N)of int ; b, t, x : int ; y : int);
|[{ Q.a.b.t.x ∧ a = A ∧ b = B ∧ t = T ∧ x = X ∧ t− b = K }
if b + 1 = t → y := b;
[] b + 1 6= t →

m := (b + t)÷ 2;
if x < a.m →
{ (m− b < K) ∧ Q.a.b.m.x ∧ a = A ∧ b = B ∧ m = M ∧ x = X }
BinSer(a, b,m, x, y)
{ R.A.B.M.X.y }

[] a.m ≤ x →
{ t−m < K) ∧ Q.a.m.t.x ∧ a = A ∧ m = M ∧ t = T ∧ x = X }
BinSer(a, m, t, x, y)
{ R.A.M.T.X.y }

fi
fi

{ R.A.B.T.X.y }
]|

Exercise 23.0
For the program in the text above, write a corresponding Oberon
program, and test it on a real machine. You will need to add
some code which initializes the variables, and some code to out-
put the results.

xvi CHAPTER 23. RECURSIVE PROCEDURES

23.3 A recursive procedure for sift

Procedure Sift from Chapter 22 provides another example of deriving
a recursive procedure. The pertinent abbreviations for the algorithm are
repeated below.

j → k ≡ (k = j) ∨ (2 ∗ j → k) ∨ (2 ∗ j + 1 → k)
f.a.j.n ≡ (∀k : (j → k) ∧ (k ≤ n) : a.j ≥ a.k)
H.a.m.n ≡ (∀j : m < j : f.a.j.n)

P5 : p = 2 ∗m
P6 : q = (2 ∗m + 1)min n
P8 : p > n ∨ (z = p ∧ a.p ≥ a.q) ∨ (z = q ∧ a.p ≤ a.q)

Using these abbreviations, the specification of Sift is:

procedure Sift(var a : array[0..N)of int ; m,n : int);
|[var p, q, z : int;
{pre : H.a.m.n ∧ a = A}
{post : H.a.(m− 1).n}
]|

Splitting off a term gives some insight into the recursive approach.

H.a.(m− 1).n
≡ { splitting off a term }

H.a.m.n ∧ f.a.m.n
≡ { and-ident, distributivity }

H.a.m.n ∧ f.a.m.n ∧ ¬f.A.m.n ∨
H.a.m.n ∧ f.a.m.n ∧ f.A.m.n

This disjunction together with the initializations of the variables p , q ,
and z leads to a partial procedure body of the form

23.3. A RECURSIVE PROCEDURE FOR SIFT xvii

procedure Sift(var a : array[0..N)of int ; m,n : int);
|[var p, q, z : int;
{pre : H.a.m.n ∧ a = A}
p := 2 ∗m; {P5}
q := (2 ∗m + 1) min n; {P6}
if p > n → skip{H.a.m.n ∧ f.a.m.n}
[] p ≤ n →

if a.p ≥ a.q → z := p
[] a.q ≥ a.p → z := q
fi
{P8}

if a.m ≥ a.z → skip
{H.a.m.n ∧ f.a.m.n ∧ f.A.m.n}

[] a.m < a.z →
{H.A.m.n ∧ ¬f.A.m.n ∧ a.m < a.z}

a := b
{H.a.m.n ∧ f.a.m.n ∧ ¬f.A.m.n}

fi
fi
]|

TBD: exercise for case a.m ≥ a.z

f.a.m.n ∧ H.a.m.n
≡ { definition of H.a.m.n }

f.a.m.n ∧ (∀ j : m < j : f.a.j.n)
≡ { split the range }

f.a.m.n ∧ (∀ j : m < j < z : f.a.j.n) ∧
(∀ j : z − 1 < j : f.a.j.n)

≡ { definition of H.a.(z − 1).n }
f.a.m.n ∧ (∀ j : m < j < z : f.a.j.n) ∧ H.a.(z − 1).n

The similarity of the third conjunct of this to the postcondition of Sift
suggests that recursive call Sift(a, z, n) will establish the third conjunct.
This gives a composition of the form below.

{H.A.m.n ∧ ¬f.A.m.n ∧ a.m < a.z}
a := b;
{f.a.m.n ∧ (∀ j : m < j < z : f.a.j.n) ∧ H.a.z.n}

Sift(a, z, n)
{f.a.m.n ∧ (∀ j : m < j < z : f.a.j.n) ∧ H.a.(z − 1).n}

xviii CHAPTER 23. RECURSIVE PROCEDURES

{ assume A.m < A.z }
wp.(a := b).(f.a.m.n ∧ (∀ j : m < j < z : f.a.j.n) ∧ H.a.z.n)

≡ { definition of H }
wp.(a := b).(f.a.m.n ∧ (∀ j : m < j ∧ j 6= z : f.a.j.n))

≡ { assignment axiom }
f.b.m.n ∧ (∀ j : m < j ∧ j 6= z : f.b.j.n)

≡ { P8, A.m < A.z }
f.b.m.n ∧ A.m < A.z ∧ (∀ j : m < j ∧ j 6= z : f.b.j.n)

⇐ { P6− P8, definition of f , [f.b.m.n ⇒ b.z ≤ b.m] }
b = a(m, z : a.z, a.m)

TBD: clarify follows from above.
This calculation completes the derivation, resulting in the procedure

body below.

{pre : H.a.m.n ∧ a = A ∧ n−m = K}
p := 2 ∗m; {P5}
q := (2 ∗m + 1) min n; {P6}
if p > n → skip{H.a.m.n ∧ f.a.m.n}
[] p ≤ n →

if a.p ≥ a.q → z := p
[] a.q ≥ a.p → z := q
fi
{P8}

if a.m ≥ a.z → skip
{H.a.m.n ∧ f.a.m.n ∧ f.A.m.n}

[] a.m < a.z →
{H.A.m.n ∧ ¬f.A.m.n ∧ a.m < a.z}

a := b;
{f.a.m.n ∧ (∀ j : m < j < z : f.a.j.n) ∧ H.a.z.n ∧ n− z < K}

Sift(a, z, n)
{f.a.m.n ∧ (∀ j : m < j < z : f.a.j.n) ∧ H.a.(z − 1).n}
{H.a.m.n ∧ f.a.m.n ∧ ¬f.A.m.n}

fi
fi
{post : H.a.(m− 1).n}

]|

Note that Sift(a, z, n) does not alter condition f.a.m.n by the way that
f is defined, and similarly, does not alter condition f.a.j.n for any index
j with m < j < z . The reason f.a.m.n is not altered is that the call
Sift(a, z, n) swaps a parent only with one of its children, therefore it pre-
serves the bag of descendants of a.m (the parent of a.z). For index j
with m < j < z , no descendant of a.j is moved.

23.4 Exercises

