Section 20.2 The Longest Upsequence 259

20.2 The Longest Upsequence

Consider a sequence of values (vg, * **,v,—). If one deletes i (not
necessarily adjacent) values from the list, one has a subsequence of length
n—i. This subsequence is called an wupsegence if its values are in non-
decreasing order. For example, the list (1,3,4,6,2,4) has a subsequence
(1,3,2), which is not an upsequence, and another subsequence (1,3, 6),
which is an upsequence. :

We want to write a program that, given a sequence in b[0:r —1], where
n >0, calculates the length of the longest upsequence of 5[0:n —1]. As an
abbreviation, use the notation /up(s) to mean:

lup(s) = the length of the longest upsequence of sequence s

Thus, using a variable & to contain the answer, the program has the pre-
and postconditions:

Q:n>0
R: k=lup(b[0:n—1])

Note that a change in any one value of a sequence could change its long-
est upsequence, and this means that possibly every value of a sequence s
must be interrogated to determine lup(s). This suggests a loop. Begin by
writing a possible invariant and an outline of the loop.

The loop will interrogate the values of b[0:n—I] in some order. Since
lup (b[0:0]) is 1, a possible invariant can be derived by replacing the con-
stant n of R by a variable:

Pi<i<n Ak=lup(b[0:i—1])
The loop itself will have the form

i, ki=1,1;
do [#n — increase i, maintaining P od

Increasing i extends the sequence b[0:i —1] for which k is the length of a
longest upsequence, and hence may call for an increase in k. Whether &
is to be increased depends on whether b[i] is at least as large as a value
that ends a longest upsequence of b[0:i—1] (there may be more than one
longest upsequence). It makes sense to maintain information in other
variables so that such a test can be efficiently made. What is the min-
imum information needed to ascertain whether k¥ should be increased?

260 Part III. The Development of Programs

The smallest value m (say) that ends an upsequence of length k& of blo:
i —1] must be known, for then 5[0:i] has an upsequence of length k -+ iff
b[i]=m. Therefore, we revise invariant P to include m:

Prlisisn Ak =lup[0:i—I]) A
m is the smallest value in b[0:i —1] that ends an
upsequence of length &

In the case b[i]=m, k can be increased and m set to b[i], so that the
program thus far looks like

i,k,m=1,1, b[0]; {P}

doi#n —ifb[ilZzm — k,m:= k+], b[i]
pelil<m —2?
fi;
=i+l

od

The question now becomes what to do if b[i]<m. Variable k¥ should
not be changed, but what about m? Under what condition must m be
changed?

If 5[0:i —1] contains an upsequence of length k—I that ends in a value
<b[i], then b[i] ends an upsequence of length k of b[0:i]. If, in addi-
tion, b[i]<<m, then m must be changed. In order to check this condi-
tion, consider maintaining the minimum value ml that ends an upse-
quence of length £ —1 of 5[0:/ —1].

This means that two values are needed: the minimum value m that
ends an upsequence of length & and the minimum value m/ that ends an

upsequence of length k —1. Judging by the development thus far, can you
generalize this?

Maintaining m caused us to introduce ml]; maintaining m! will cause us
to introduce m2 to contain the minimum value that ends an upsequence
of length k—2. And so on. Therefore, an array of values is needed. We
modify the invariant once more:

(20.2.1) P:r1<isn Ak =lupb[0:i—IDA
(Aj: 1<j<k: m[j]is the smallest value that ends
an upsequence of length j of A[0:i —1])

And the program is changed to

Section 20.2 The Longest Upsequence 261

i, k,m[l}=1,1, [0]; {P}

doisn —if bi1=m[k] — k= k+1; m[k]= b[i]
Delil<m[k]—?
fi;
it= i+l

od

Before proceeding further, it makes sense to investigate array m; does it
have any properties that might be useful?

Array m is ordered, because the minimum value that ends an upsequence
of length j (say) must be at most the minimum value that ends an upse-
quence of length j+I1.

We are now faced with determining which values of m[1:k] must be
changed in case b[i]<m[k]. Solve this problem.

The case b[i]<{m[1] is the easiest to handle. Since m[1] is the smallest
value that ends an upsequence of length 1 of b[0:i—1], if b[i1<m[1],
then b5[i] is the smallest value in A[0:/] and it should become the new
m[1]. No other value of m need be changed, since all upsequences of
b[0:i—1] end in a value larger than b[i].

Finally, consider the case m[1]1<b[i]<m[k]. Which values of m
should be changed? Clearly, only those greater than 5[i] can be changed,
since they represent minimum values. So suppose we find the j satisfying

m[j—11<b[i]1<m[j]

Then m[1:j—1] should not be changed. Next, since m[j—1] ends an
upsequence of length j—1 of 5[0:i—1], b[i] ends an upsequence of length
J of 5[0:/]. Hence, m[j] should be changed to b[{]. Finally, m[j+1:k]
should not be changed (why?).

Binary search (exercise 4 of section 16.3) can be used to locate j. The
final program is given in (20.2.2).

The execution time of program (20.2.2) is proportional to (n logn) in
the worst case and to » in the best. It requires space proportional to # in
the worst case, for array m. It uses a technique called “dynamic pro-
gramming”, although it was developed without conscious knowledge of
that technique.

262 Part I111. The Development of Programg

(202.2) i, k, m[1]=1,1, b[0]; {P}
finv: (20.2.1); bound: n—i}
doi#n —if b[i] =Zmlk] — k= k+1; m[k]= b[i]
0601 <m[l1] — m[1]= b[i]
Im[lI<bli]<m[k] — .
Establish m[j—1]<b[i]<m[j]:
h,ji=1,k;
finv: 1<h <j <k nm[h]<b[i]<m[/j]}
{bound: j—h—1}
doh#j—1 —ei=(h+j)+2;
if mle]<bli]—hi=e
Imle]>bli] —ji=e
fi
od;
m[j]-= b[i]
fi;
=i+l
od

Exercises for Chapter 20

1. (Unique 5-bit Sequences). Consider sequences of 36 bits. Each such sequence
has 32 5-bit sequences consisting of adjacent bits. For example, the sequence
1101011... contains the 5-bit sequences 11010, 10101, 01011, Write a program
that prints all 36-bit sequences with the two properties

(1) The first 5 bits of the sequence are 00000.
(2) No two 5-bit subsequences are the same.

2. (The Next Higher Permutation). Suppose array b[0:n —1] contains a sequence
of (not necessarily different) digits, e.g. n =6 and #[0:5]=(2,4,3,6,2,1). Con-
sider this sequence as the integer 243621. For any such sequence (except for the
one whose digits are in decreasing order) there exists a permutation of the digits
that yields the next higher integer (using the same digits). For the example, it is
(2,4,6,1,2,3), which represents the integer 246123.

Write a program that, given an array b[0:x —1] that has a next higher permu-
tation, changes b into that next higher permutation.

3. (Different Adjacent Subsequences). Consider sequences of 1's, 2’ and 3%. Call
a sequence good if no two adjacent non-empty subsequences of it are the same.
For example, the following sequences are good:

2

32
32123
1232123

