SE 504 (Formal Methods and Models)
Spring 2019
HW \#3: wp, Expression Calculation, Catenation, Selection
Due: 6pm, Friday, March 1

Let S be a program and Q be a predicate (over the state space of S). The expression wp. $S . Q$ (read "weakest precondition of S with respect to Q ") refers to the weakest predicate P satisfying the Hoare triple $\{P\} S\{Q\}$. In other words

$$
\{\mathrm{P}\} \mathrm{S}\{\mathrm{Q}\} \equiv[P \Rightarrow \text { wp.S.Q }]
$$

Among the laws pertaining to wp are these:
wp skip law: [wp.skip. $Q \equiv Q]$
wp assignment law: [wp. $(x:=E) \cdot Q \equiv Q(x:=E)]$
wp catenation law: [wp. $\left.\left(S_{1} ; S_{2}\right) \cdot Q \equiv \mathrm{wp} . S_{1} \cdot\left(\mathrm{wp} . S_{2} \cdot Q\right)\right]$

The wp catenation law says, in effect, that the weakest solution to $\{?\} S_{1} ; S_{2}\{Q\}$ is none other than wp. $S_{1} . R$ (i.e., the weakest solution to $\{?\} S_{1}\{\mathrm{R}\}$), where R is wp. $S_{2} . Q$ (i.e., the weakest solution to $\left.\{?\} S_{2}\{Q\}\right)$.

That is, to obtain the weakest precondition for the catenation $S_{1} ; S_{2}$ (with respect to a postcondition Q), we first find the weakest precondition for S_{2} (with respect to Q), which serves as our "intermediate assertion" between S_{1} and S_{2}.

In problems 1-3, simplify the given expression as much as possible. Use the wp laws given above, as well as well-known theorems from arithmetic, algebra, and logic. Regarding Problem 2, note that catenation is associative, meaning that $\left(S_{1} ; S_{2}\right) ; S_{3}$ and $S_{1} ;\left(S_{2} ; S_{3}\right)$ are equivalent programs. Problem 3, despite being worded differently, is the same kind of problem as the ones preceding it.

1. wp. $(i:=i-2 * j ; j:=j+i) .(2 i \geq j)$
2. $\operatorname{wp} \cdot(y:=x-y ; x:=x-y ; y:=y+x) \cdot(x=Y \wedge y=X)$
3. Determine the weakest predicate P that makes this Hoare Triple true:

$$
\{P\} i:=i-1 ; \text { sum }:=\text { sum }+b . i\{\text { sum }=(+j \mid i \leq j<\# b: b . j) \wedge 0 \leq i \leq \# b\}
$$

Continued on next page ...

In each of problems 4 through 6 , calculate an expression that, when substituted for E, makes the given Hoare Triple valid. Each occurrence of C denotes a rigid variable (in the terminology of Gries and Schneider), not a program variable. Thus, the expression you give as your answer should not include any occurrences of C. Also, simplify your expression as far as possible by making use of algebra and/or the given pre-condition.
4. $\left\{y=x^{2}\right\} x, y:=x+3, y+E\left\{y=x^{2}-5\right\}$
5. $\{\mathrm{C}=m-j\} j, m:=E, m-j\{\mathbf{C}=2 m+j\}$
6. $\{P \wedge 0<m \leq r\} q, r:=E, r-m\{P \wedge r \geq 0\}$, where $P: C=q \cdot m+r$

The remaining problems involve Hoare Triples whose programs include both a selection command and a catenation of commands.

Recall that if IF is the program

$$
\text { if } B_{0} \rightarrow S_{0}[] B_{1} \rightarrow S_{1} \mathrm{fi}
$$

then $\{P\} \operatorname{IF}\{Q\} \equiv\left[P \Rightarrow\left(B_{0} \vee B_{1}\right)\right] \wedge\left\{P \wedge B_{0}\right\} S_{0}\{Q\} \wedge\left\{P \wedge B_{1}\right\} S_{1}\{Q\}$
7. Prove
$\{P \wedge i<\# b\}$
if $b . i>0 \rightarrow$ sum $:=$ sum $+b . i ; i:=i+1$
[]$b . i \leq 0 \rightarrow i:=i+1$
fi
$\{P \wedge i \leq \# b\}$
where $P: 0 \leq i \wedge$ sum $=(+j \mid 0 \leq j<i \wedge b . j>0: b . j)$
Notice that the first branch of the selection command is a catenation of two assignment commands. Thus, in showing that that branch behaves as intended, you must make use of a catenation law.

Hint 1: A quantification range such as $0 \leq i<n+1 \wedge R$ can be rewritten as the disjunction $(0 \leq i<n \wedge R) \vee(i=n \wedge R)$ (first by rewriting $0 \leq i<n+1$ as $0 \leq i<n \vee i=n$ and then by applying (3.46)), after which Range Split (8.16) is applicable.

Hint 2: A quantification range of the form $P \wedge R$, where R does not mention a dummy, can, in some circumstances, be simplified to either P or false, the former when R can be reduced to true and the latter when R can be reduced to false.

Hint 3: Theorem (3.84a) tells us that the conjunction $(e=f) \wedge P$ is equivalent to $(e=f) \wedge P^{\prime}$, where P^{\prime} is obtained from P by replacing one or more occurrences of e by f. If e is a dummy and f is not, this is one way of getting rid of a dummy in a conjunct. (See Hint 2.)

Continued on next page ...
8. Prove
$\{P \wedge 0 \leq k<\# b\}$
if $b . k \leq 0 \rightarrow$ sum $:=$ sum $-b . k$
[] $b . k \geq 0 \rightarrow$ sum $:=$ sum $+b . k$
fi
$; k:=k+1$
$\{P\}$
where P : sum $=(+i|0 \leq i<k:|b . i|)$ and where $|x|$ is the absolute value of x, defined as follows:

$$
[(|x|=x \equiv x \geq 0) \wedge(|x|=-x \equiv x \leq 0)]
$$

Notice that the program is a catenation of a selection command and an assignment command. Thus, to show that the Hoare Triple is valid you must make use of a catenation law.

