SE 504 (Formal Methods and Models)
Spring 2020
HW \#3: wp, Catenation, Selection
Due: 7:20pm, Thursday, February 20

Let S be a program and Q be a predicate (over the state space of S). The expression wp.S.Q (read "weakest precondition of S with respect to Q ") refers to the weakest predicate P satisfying the Hoare triple $\{\mathrm{P}\} \mathrm{S}\{\mathrm{Q}\}$. In other words

$$
\{\mathrm{P}\} \mathrm{S}\{\mathrm{Q}\} \equiv[P \Rightarrow \mathrm{wp} . S . Q]
$$

Among the laws pertaining to wp are these:
wp skip law: $[$ wp.skip. $Q \equiv Q]$
wp assignment law: $[\mathrm{wp} .(x:=E) \cdot Q \equiv Q(x:=E)]$
wp catenation law: [wp. $\left.\left(S_{1} ; S_{2}\right) \cdot Q \equiv \mathrm{wp} \cdot S_{1} \cdot\left(\mathrm{wp} \cdot S_{2} \cdot Q\right)\right]$

The wp catenation law says, in effect, that the weakest solution to $\{?\} S_{1} ; S_{2}\{Q\}$ is none other than wp. $S_{1} \cdot R$ (i.e., the weakest solution to $\left\{\right.$?\} $S_{1}\{\mathrm{R}\}$), where R is wp. $S_{2} \cdot Q$ (i.e., the weakest solution to $\{?\} S_{2}\{Q\}$).

That is, to obtain the weakest precondition for the catenation $S_{1} ; S_{2}$ (with respect to a postcondition Q), we first find the weakest precondition for S_{2} (with respect to Q), which serves as our "intermediate assertion" between S_{1} and S_{2}.

In problems 1-3, simplify the given expression as much as possible. Use the wp laws given above, as well as well-known theorems from arithmetic, algebra, and logic. Regarding Problem 2, note that catenation is associative, meaning that ($S_{1} ; S_{2}$); S_{3} and $S_{1} ;\left(S_{2} ; S_{3}\right)$ are equivalent programs. Problem 3, despite being worded differently, is the same kind of problem as the ones preceding it.

1. wp. $(i:=i+2 * j ; j:=j+i) .(i>2 j)$
2. wp. $(y:=x-y ; x:=x-y ; y:=y+x) .(x=Y \wedge y=X)$
3. Determine the weakest predicate P that makes this Hoare Triple true:

$$
\{P\} i:=i-1 ; \text { sum }:=\operatorname{sum}+b . i\{\text { sum }=(+j \mid i \leq j<\# b: b . j) \wedge 0 \leq i \leq \# b\}
$$

The remaining problems involve Hoare Triples whose programs include both a selection command and a catenation of commands.

Recall that if IF is the program

$$
\text { if } B_{0} \rightarrow S_{0}[] B_{1} \rightarrow S_{1} \mathrm{fi}
$$

then $\{P\} \operatorname{IF}\{Q\} \equiv\left[P \Rightarrow\left(B_{0} \vee B_{1}\right)\right] \wedge\left\{P \wedge B_{0}\right\} S_{0}\{Q\} \wedge\left\{P \wedge B_{1}\right\} S_{1}\{Q\}$
4. Prove
$\{P \wedge i<\# b\}$
if $b . i \geq 0 \rightarrow$ sum $:=$ sum + b. $i ; i:=i+1$
[] $b . i \leq 0 \rightarrow i:=i+1$
fi
$\{P \wedge i \leq \# b\}$
where $P: 0 \leq i \wedge$ sum $=(+j \mid 0 \leq j<i \wedge b . j \geq 0: b . j)$
Notice that the first branch of the selection command is a catenation of two assignment commands. Thus, in showing that that branch behaves as intended, you must make use of a catenation law.

Hint 1: A quantification range such as $0 \leq i<n+1 \wedge R$ can be rewritten as the disjunction $(0 \leq i<n \wedge R) \vee(i=n \wedge R)$ (first by rewriting $0 \leq i<n+1$ as $0 \leq i<n \vee i=n$ and then by applying (3.46)), after which Range Split (8.16) is applicable.

Hint 2: A quantification range of the form $P \wedge R$, where R does not mention a dummy, can, in some circumstances, be simplified to either P or false, the former when R can be reduced to true and the latter when R can be reduced to false.

Hint 3: Theorem (3.84a) tells us that the conjunction $(e=f) \wedge P$ is equivalent to $(e=f) \wedge P^{\prime}$, where P^{\prime} is obtained from P by replacing one or more occurrences of e by f. If e is a dummy and f is not, this is one way of getting rid of a dummy in a conjunct. (See Hint 2.)
5. Prove
$\{P \wedge 0 \leq k<\# b\}$
if $b . k \leq 0 \rightarrow$ sum $:=$ sum $-b . k$
[] b.k $\geq 0 \rightarrow$ sum $:=$ sum $+b . k$
fi
$; k:=k+1$
$\{P\}$
where P : sum $=(+i|0 \leq i<k:|b . i|)$ and where $|x|$ is the absolute value of x, defined as follows:

$$
[(|x|=x \equiv x \geq 0) \wedge(|x|=-x \equiv x \leq 0)]
$$

Notice that the program is a catenation of a selection command and an assignment command. Thus, to show that the Hoare Triple is valid you must make use of a catenation law.

