
SE 504 (Formal Methods and Models)
Spring 2020
HW #3: wp, Catenation, Selection
Due: 7:20pm, Thursday, February 20

Let S be a program and Q be a predicate (over the state space of S). The expression wp.S.Q
(read “weakest precondition of S with respect toQ”) refers to the weakest predicate P satisfying
the Hoare triple {P} S {Q}. In other words

{P} S {Q} ≡ [P ⇒ wp.S.Q]

Among the laws pertaining to wp are these:

wp skip law: [wp.skip.Q ≡ Q]

wp assignment law: [wp.(x := E).Q ≡ Q(x := E)]

wp catenation law: [wp.(S1;S2).Q ≡ wp.S1.(wp.S2.Q)]

The wp catenation law says, in effect, that the weakest solution to {?} S1;S2 {Q} is none other
than wp.S1.R (i.e., the weakest solution to {?} S1 {R}), where R is wp.S2.Q (i.e., the weakest
solution to {?} S2 {Q}).

That is, to obtain the weakest precondition for the catenation S1;S2 (with respect to a post-
condition Q), we first find the weakest precondition for S2 (with respect to Q), which serves as
our “intermediate assertion” between S1 and S2.

In problems 1-3, simplify the given expression as much as possible. Use the wp laws given
above, as well as well-known theorems from arithmetic, algebra, and logic. Regarding Problem
2, note that catenation is associative, meaning that (S1;S2);S3 and S1; (S2;S3) are equivalent
programs. Problem 3, despite being worded differently, is the same kind of problem as the ones
preceding it.

1. wp.(i := i+ 2 ∗ j; j := j + i).(i > 2j)

2. wp.(y := x− y; x := x− y; y := y + x).(x = Y ∧ y = X)

3. Determine the weakest predicate P that makes this Hoare Triple true:

{P} i := i− 1; sum := sum+ b.i {sum = (+j | i ≤ j < #b : b.j) ∧ 0 ≤ i ≤ #b}

1

The remaining problems involve Hoare Triples whose programs include both a selection com-
mand and a catenation of commands.

Recall that if IF is the program

if B0 → S0 [] B1 → S1 fi

then {P} IF {Q} ≡ [P ⇒ (B0 ∨B1)] ∧ {P ∧B0} S0 {Q} ∧ {P ∧B1} S1 {Q}

4. Prove
{P ∧ i < #b}
if b.i ≥ 0 → sum := sum+ b.i; i := i+ 1
[] b.i ≤ 0 → i := i+ 1
fi

{P ∧ i ≤ #b}

where P : 0 ≤ i ∧ sum = (+j | 0 ≤ j < i ∧ b.j ≥ 0 : b.j)

Notice that the first branch of the selection command is a catenation of two assignment com-
mands. Thus, in showing that that branch behaves as intended, you must make use of a
catenation law.

Hint 1: A quantification range such as 0 ≤ i < n+ 1 ∧ R can be rewritten as the disjunction
(0 ≤ i < n ∧ R) ∨ (i = n ∧ R) (first by rewriting 0 ≤ i < n + 1 as 0 ≤ i < n ∨ i = n and
then by applying (3.46)), after which Range Split (8.16) is applicable.

Hint 2: A quantification range of the form P ∧ R, where R does not mention a dummy, can,
in some circumstances, be simplified to either P or false, the former when R can be reduced to
true and the latter when R can be reduced to false.

Hint 3: Theorem (3.84a) tells us that the conjunction (e = f)∧P is equivalent to (e = f)∧P ′,
where P ′ is obtained from P by replacing one or more occurrences of e by f . If e is a dummy
and f is not, this is one way of getting rid of a dummy in a conjunct. (See Hint 2.)

5. Prove
{P ∧ 0 ≤ k < #b}
if b.k ≤ 0 → sum := sum− b.k

[] b.k ≥ 0 → sum := sum+ b.k

fi

; k := k + 1
{P}

where P : sum = (+i | 0 ≤ i < k : |b.i|) and where |x| is the absolute value of x, defined as
follows:

[(|x| = x ≡ x ≥ 0) ∧ (|x| = −x ≡ x ≤ 0)]

Notice that the program is a catenation of a selection command and an assignment command.
Thus, to show that the Hoare Triple is valid you must make use of a catenation law.

2

