

from System Objectives

to UML Models

to Precise Software Specifications

Axel van Lamsweerde University of Louvain B-1348 Louvain-la-Neuve (Belgium)

avl@info.ucl.ac.be

May 2003

The requirements problem: the good old time...

- Poor requirements are ubiquitous ...
 - "requirements need to be *engineered*
 - and have continuing review & revision"
 - (Bell & Thayer, empirical study, 1976)
- Prohibitive cost of late correction ...

"up to 200 x cost of early correction" (Boehm, 1981)

• RE is hard & critical ...

"hardest, most important function of SE is the iterative *extraction* & *refinement* of requirements" (Brooks, 1987)

Outline	
 Requirements engineering 	
 Goal-oriented requirements engineering 	
 Building rich system models for RE 	
 Modeling & specification techniques 	
The goal model	
The object model	
The agent model	
The operation model	
 A goal-oriented RE method in action 	
 From requirements to software specs 	
♦ Conclusion	
	6

- Structural view of the system being modeled
- Object = thing of interest in the system whose instances ...
 - share similar features
 - can be distinctly identified
 - have specific behavior from state to state
- Object specializations (at meta level):
 - entity: autonomous object
 - association: object dependent on other objects it links
 - event: instantaneous object
 - agent: active object, controls behaviors

87

Specifying operations
♦ Textual template
Operation OpenDoors
Def The operation to control the opening of all train doors at once
Input Train, Output Train/DoorsState
DomPre The train doors are closed
DomPost The train doors are open
ReqPre For DoorsClosedWhileNonzeroSpeed The train speed is 0
ReqPre For SafeEntry&Exit The train is at some station
ReqTrig For NoDelayToPassengers
The train has just stopped
[CausedBy StopSignal]
PerformedBy OnBoardController

The goal-oriented RE method in action (2) • 1-3: First sketch of goal model (fragments) • from intentional keywords: "to", "in order to", shall", etc. in preliminary material, interviews, ... (pre-canned here !) PumpOnWhenHighWater PumpOffWhenLowWater EvacuationWhenPumpFailure AlarmWhenCriticalGasLevel PumpOffWhenCriticalMethane

