CS2 AND JAVA’S COMPARATOR INTERFACE

Robert McCloskey, John Beidler, and Yaodong Bi

Department of Computing Sciences

University of Scranton

Scranton, PA 18510

570-941-7774

{mccloske,beidler,bi}@cs.uofs.edu
ABSTRACT

This paper discusses the distinct roles of Java’s Comparable and Comparator interfaces for addressing natural orderings and application-specific orderings, respectively. We illustrate the Comparator interface as a tool for software reuse with examples of multi-key and indirect orderings.

1
INTRODUCTION

A significant amount of software development is for the purpose of producing programs that organize and filter data. Software reuse is vital to software productivity. Both of these activities are supported by the Comparable and Comparator interfaces in the Java API. Virtually every textbook for the CS2 or Data Structures courses covers the Comparable interface, but the vast majority of them either barely mentions the Comparator interface ([2], [3], [6], [10], [11], [13], [14]) or provides only shallow coverage ([4], [5], [7], [12], [16]).

Frequently, the Comparable interface is presented in the context of genericity, which is a key to software reuse and improved software productivity. Using the Comparable interface is, in fact, an important step towards genericity, but the Comparator interface allows one to go a little farther. In the Java API, Comparable is described as follows:

“This interface imposes a total ordering on the objects of each class that implements it. This ordering is referred to as the class's natural ordering, and the class's compareTo method is referred to as its natural comparison method.”

Regarding Comparator, the Java API says that it provides “a comparison function that imposes a total ordering on some collection of objects” (emphasis ours). These descriptions suggest what we wish to echo here: a class should implement Comparable only if it has a “natural” ordering and that other useful application-specific orderings of objects in a class should be defined via Comparator.

Section 2 presents the Comparable and Comparator interfaces from the perspective of attempts to apply the former where the latter is more appropriate. Section 3 complements this presentation by comparing the two interfaces from a software design perspective. Sections 4 and 5 discuss the use of the Comparator interface for implementing complex orderings (including generic multi-key orderings) and generic indirect sorting/searching, respectively. Section 6 draws some conclusions.

2
COMPARABLE VERSUS COMPARATOR: EXAMPLES
The Comparable interface (in the package java.lang) is (in effect) as follows:

public interface Comparable {

 /* compares this object with the specified object (i.e.,

* o), returning a negative integer, zero, or a positive

* integer according to whether this object is less than,

* equal to, or greater than, respectively, the

* specified object

 */

 public int compareTo(Object o);

 }

The intent of compareTo() is to define a "natural ordering" on the objects in the implementing class. For example, String (also in java.lang) is an implementing class whose compareTo() method yields results that are consistent with lexicographical ordering of strings (based upon the Unicode values of characters).

Consider the following class:

public class Student {

 ...

 ...

 public int getID();

 public String getLastName();

 public String getFirstName();

 public java.util.Date getBirthDate();

 public String getMajor();

 public String getClass();

 ...

 ...

}
One can easily imagine applications calling for a collection of Student objects to be sorted by ID, or by name, or by age, or by some other attribute. Suppose, then, that we wish to develop software providing the capability of sorting an array of type Student[] by any of these attributes. Software engineering principles tell us that, rather than developing special-purpose sorting methods, we should reuse well-tested software components already in existence. In this case, we note that the Java API includes a class java.util.Arrays that provides several array utilities, including "generic" methods for searching and sorting. One of these has the signature

public static void sort(Object[] a)

Its specification states that it sorts a[] “into ascending order, according to the natural ordering of its elements”. It is assumed, as a pre-condition, that each element of the array is an instance of a class that implements Comparable and thus has a method compareTo() defining that natural ordering.

Can we make use of this method for sorting an array of students? As it stands, the class Student does not implement Comparable; hence the elements of the array fail to satisfy the method's pre-condition. One way to bridge this gap is to introduce classes StudentOrderedByID, StudentOrderedByName, etc., each extending Student and implementing Comparable by defining a compareTo method based upon the appropriate attribute. For example, StudentOrderedByID and StudentOrderedByName could be as follows:

 public class StudentOrderedByID extends Student

 implements Comparable {

 public StudentOrderedByID(Student s) { super(s); }

 public int compareTo(Object o) {

 int thisID = this.getID();

 int oID = ((Student) o).getID();

 return thisID – oID;

 }

 }

 public class StudentOrderedByName extends Student

 implements Comparable {

 public StudentOrderedByName(Student s) { super(s); }

 public int compareTo(Object o) {

 String thisLName = this.getLastName();

 String oLName = ((Student) o).getLastName();

 if (thisLName.equals(oLName)) {

 String thisFName = this.getFirstName();

 String oFName = ((Student) o).getFirstName();

 return thisFName.compareTo(oFName);

 }

 else

 { return thisLName.compareTo(oLName); }

 }

 }

In writing these subclasses, we assumed (for reasons that will become clear below) that the Student class includes a constructor that, given an instance of Student, constructs an identical one. Strictly speaking, all we need is the ability to construct a Student object that is identical to an existing one; this also could be accomplished through the use of a clone() method or, alternatively, "observer" methods providing all of the attributes of such an object (e.g., getID(), getLastName(), etc.) plus a constructor that takes all of those attributes as parameters and constructs the corresponding Student object.

Having introduced these subclasses, we can now devise methods for sorting an array of type Student[] by ID, by name, and so forth. For example:

 public static void sortStudentAryByID(Student[] s) {

 // re-assign each array element to refer to a student

 // object that is identical to the original but that is

 // an instance of the subclass StudentOrderedByID

 for (int i=0; i != s.length; i = i+1) {

 s[i] = new StudentOrderedByID(s[i]);

 }

 java.util.Arrays.sort(s);

 }
This solution obviously incurs the cost (in both time and space) of constructing new Student objects. Worse, if it is vital that the set of objects referenced by the array’s elements remains fixed (e.g., because these objects are part of a linked structure that must be accessed via the array), this is no solution at all. Nor will this work if one or more of the objects referenced in the array is an instance of some subclass of Student, because then the attempt to form a “duplicate” object that is an instance of StudentOrderedByID causes ---depending upon how it is done--- either a ClassCastException to be thrown or the creation of a new object lacking information found in the original.

A somewhat better solution is obtained by employing composition rather than extension. Consider once again sorting an array of Student objects by ID. We define a new (wrapper) class StudentOrderedByIDWrap that has as its lone data item a reference stu to a Student and that implements Comparable by including a compareTo method that compares the ID of this.stu with the ID of o.stu (where o is the parameter, which is assumed to be an instance of the same class). In detail:

 public class StudentOrderedByIDWrap implements Comparable{

 private Student stu;

 public StudentOrderedByIDWrap(Student s) { stu = s; }

 public Student getStu() { return stu; }

 public int compareTo(Object o) {
 int id1 = stu.getID();

 int id2 = (((StudentOrderedByIDWrap)o).getStu()).getID();

 return id1 – id2;

 }

 }

To sort an array s of type Student[], form a new array sAux of type StudentOrderedByIDWrap[] and make sAux[i] refer to a wrapped version of the Student referred to by s[i], for all i. Then sort sAux using java.util.Arrays.sort. Finally, make s[i] refer to the student wrapped in sAux[i] , for all i. In detail:

public static void SortStudentsByID(Student[] s){

 StudentOrderedByIDWrap[] sAux =

 new StudentOrderedByIDWrap[s.length];

 for (int i=0; i != s.length; i = i+1)

 { sAux[i] = new StudentOrderedByIDWrap(s[i]); }

 java.util.Arrays.sort(sAux);

 for (int i=0; i != s.length; i = i+1)

 { s[i] = sAux[i].getStu(); }

}
Notice that this composition-based solution does not rely upon Student to provide a means for producing duplicates; moreover, it works even if some of the objects referenced in the array are instances of subtypes of Student. Hence, it avoids the most serious drawbacks of the extension-based approach. However, it still suffers from the need to create an auxiliary array of surrogate objects and to recover the original objects after processing the surrogates.

Is there a different approach that is free of all these drawbacks? Yes, as we now show by giving a solution that utilizes the interface java.util.Comparator, which, in part, is (in effect) as follows:

 public interface Comparator {

 /* compares its two arguments o1 and o2 for order,

 * returning a negative integer, zero, or a positive

 * integer according to whether o1 is less than, equal

 * to, or greater than, respectively, o2

 */

 public int compare(Object o1, Object o2);

 }
Analogous to the one-argument sort method in java.util.Arrays used above, there is another sort method in the same class with the signature

public static void sort(Object[] a, Comparator c)

Its specification says that it sorts a[] into ascending order “according to the ordering induced by the specified comparator” (i.e., c). (It is assumed, as a pre-condition, that the elements of the array are “mutually comparable” by c.)

Rather than introducing a subclass (or a wrapper class) of Student for each ordering that we wish to define on objects of that class, we introduce, for each such ordering, a class implementing the Comparator interface and having a compare() method yielding results consistent with that ordering. For example, for ordering by ID and by name we introduce the classes

 public class StudentCompareByID implements Comparator {

 public int compare(Object left, Object right) {

 int id1 = ((Student)left).getID();

 int id2 = ((Student)right).getID();

 return id1 – id2;

 }

 }

 public class StudentCompareByName implements Comparator {

 public int compare(Object left, Object right) {

 String lName1 = ((Student)left).getLastName();

 String lName2 = ((Student)right).getLastName();

 if (lName1.equals(lName2)) {

 String fName1 = ((Student)left).getFirstName();

 String fName2 = ((Student)right).getFirstName();

 return fName1.compareTo(fName2);

 }

 else

 { return lName1.compareTo(lName2); }

 }

 }
Now sorting an array s of type Student[] by ID is accomplished by the invocation

java.util.Arrays.sort(s, new StudentCompareByID());

Similarly, to sort by name it suffices to invoke

java.util.Arrays.sort(s, new StudentCompareByName());

Clearly, this is a better solution than that obtained using the Comparable interface.

3
COMPARATOR VERSUS COMPARABLE: DESIGN PERSPECTIVE

Among the four dimensions that Krueger identifies for evaluating software reuse approaches [8], three are relevant in comparing the Comparable and Comparator interfaces:

1. Abstraction: An essential feature of any reuse approach.

2. Specialization: Refinements, instantiations, or extensions (as in sub-classing) made to the reusable artifact to meet the needs of the application.

3. Integration: Adjustments made in the application code in order to employ the reused artifact.

Although the Comparable and Comparator interfaces are quite similar on the surface, they represent two distinct abstractions; as a result, their use in developing applications that employ application-specific orderings demands quite different specialization and, particularly, integration activities. Here we explore this issue in general, which should illuminate the examples of the previous section.

The Comparable interface is necessarily implemented by the class on which the resulting ordering (i.e., that induced by compareTo) is defined. That is, any implementing class has the form

public class MyClass ... implements Comparable{

 ...

 public int compareTo(Object o) { ... }

 ...

}

in which compareTo defines an ordering on instances of MyClass. The abstraction represented by Comparable, then, is one of an ordering that is an intrinsic feature of a class, i.e., a “natural” ordering, as stated in the API. Consequently, using Comparable to implement an application-specific ordering on a class A (without modifying A, of course) requires the construction ---via either extension or composition from A--- of a new Comparable-implementing class A’. (This is depicted on the left-hand side of the figure below.) To make use of this ordering in processing a collection of A-objects via a general-purpose utility requires that we construct instances of A’ that act as surrogates. As we saw in Section 2, this can be problematic. These problems stem from the fact that the use of Comparable forces us to bind the ordering with the objects on which it is defined.

On the other hand, an implementation of the Comparator interface may be (and typically is) external to the class on which it defines an ordering. The abstraction it represents, then, is one of an ordering that, although intended to be applied to instances of some particular class, is distinct from that class. Hence, any general-purpose utility intended to use such an ordering for processing the objects in some collection has at least two parameters, one for the collection of objects and another, of type Comparator, embodying the ordering. The benefit of this separation is that integration (in Krueger’s sense) is simpler, as there is no need to create surrogate objects and then, after processing them, to recover the originals.

Interestingly, a Comparable–implementing class’s natural order is easily encapsulated within a Comparator-implementing class, which means that all general-purpose utilities designed to employ application-specific orderings (embodied in a parameter of type Comparator) can use natural orderings, too. To illustrate, we devise the class StringNaturalOrder:

import java.util.Comparator;

public class StringNaturalOrder implements Comparator{

 public int compare(Object left, Object right)

 { return ((String)left).compareTo(right); }

}

The above discussion provides some evidence that, among the abstractions represented by Comparable and Comparator, the latter is more flexible and robust. This is not to say that the former is not useful, or should never be used, but only that its use is appropriate in a more narrow set of contexts.

As a general guideline, we recommend that, given any collection of objects and any organizational task (e.g., sorting, filtering, searching) requiring the use of an ordering on those objects, these three steps be performed:

1. Develop a Comparator–implementing class whose compare method defines the intended ordering on the objects.

2. Select (or develop) the required utility (e.g., sort), whose parameters should include one for the collection of objects and one of type Comparator. The compare method of the latter should be used in making comparisons between elements of the former.

3.
Invoke the utility, passing to it the collection of objects and an instance of the Comparator–implementing class mentioned in (1).

	[image: image1.jpg]Derived Comparable (i?\ggfaa?éor

Class | Interface
1
_/ / l \
Comparato Comparator -G@
Class 1
N

Class 1 Class 1

<€— extension or composition Original

<«—— implements Class

Class
< references \

4
COMPLEX ORDERINGS VIA COMPARATOR

Section 2 illustrated Comparator-based orderings of Student by ID and name. In each of those examples, the ordering of Student objects was in accord with the natural ordering of (the data type of) the key attribute(s). For example, the ordering by ID was based upon the natural ordering of the int type and the ordering by name was based upon the lexicographical ordering of String, the data type of the lastName and firstName attributes. However, in some applications, the desired ordering of objects does not conform to the natural ordering(s) of the key attribute(s). For example, if the data type of the class attribute of Student is String, lexicographical ordering would put “Graduate” before “Junior” and “Senior” before “Sophomore”, whereas the intended ordering goes from “Freshman” to “Graduate”. Thus, we cannot always rely upon underlying natural orderings. The following is a Comparator for ordering Student objects by class.

	import java.util.Comparator;

public class StudentCompareByClass implements Comparator {

 public int compare(Object o1, Object o2){

 String class1 = ((Student)o1).getClass();

 String class2 = ((Student)o2).getClass();

 if (class1.equals(class2)) {return 0;}

 else if (class1.equals("Freshman")) {return -1;}

 else if (class2.equals("Freshman")) {return +1;}

 else if (class1.equals("Sophomore")) {return -1;}

 else if (class2.equals("Sophomore")) {return +1;}

 else if (class1.equals("Junior")) {return -1;}

 else if (class2.equals("Junior")) {return +1;}

 else if (class1.equals("Senior")) {return -1;}

 else {return +1;}

 }

}

Many applications sort objects by two or more keys considered in some particular order of significance. For example, Student objects can be ordered, in decreasing order of significance, by class, major, and ID. The compare method of a Comparator-implementing class for this ordering can be obtained by cobbling together the code from the compare methods of StudentCompareByClass, StudentCompareByMajor (assuming it exists), and StudentCompareByID. But a better approach is to reuse those classes:

 import java.util.Comparator;

 public class StudentCompareByClassMajorID

 implements Comparator{

public int compare(Object left, Object right){

 Comparator c1 = new StudentCompareByClass();

 if(c1.compare(left,right)!=0)

 { return c1.compare(left,right); }

 Comparator c2 = new StudentCompareByMajor();

 if(c2.compare(left,right)!=0)

 { return c2.compare(left,right); }

 Comparator c3 = new StudentCompareByID();

 if(c3.compare(left,right)!=0)

 { return c3.compare(left,right); }

 return 0;

}

 }

Now we can sort an array of Student objects via the invocation

java.util.Arrays.sort(s, new StudentCompareByClassMajorID())

Observe that the compare method of StudentCompareByClassMajorID simply invokes the compare methods of the three relevant comparators, from most significant to least, returning the first non-zero value obtained. (If all yield zero, zero is returned.) It is not hard to see that we can generalize this to arrive at a new, reusable Comparator-implementing class, MultiKeyComparator, that uses any number of other comparators. Its constructor takes an array of comparators, assumed to occur in decreasing order of significance.

import java.util.Comparator;

public class MultiKeyComparator implements Comparator{

 Comparator[] key;

 public MultiKeyComparator(Comparator[] c) { this.key = c; }

 public int compare(Object left, Object right){

 for(int i=0; i < key.length; i++){

 if(key[i].compare(left,right) != 0)

 { return key[i].compare(left,right); }

 }

 return 0;

 }

}

With this class, we can sort Student objects using class, major and ID as primary, secondary, and tertiary sort keys, respectively, as follows:

public static void sortStudentAryByClassMajorID(Student[] s){

 Comparator[] sortkeys = new Comparator[3];

 sortKeys[0] = new StudentCompareByClass();

 sortKeys[1] = new StudentCompareByMajor();

 sortKeys[2] = new StudentCompareByID();

 Comparator c = new MultiKeyComparator(sortKeys);

 java.util.Arrays.sort(s, c);

}

The reader is invited to develop a general scheme by which to implement multi-key orderings using Comparable, rather than Comparator. We trust that the result will be far more cumbersome to apply.

5
INDIRECT SORTING/SEARCHING VIA COMPARATOR
Suppose that, with respect to some comparator c, we wish to sort the objects referred to by an array ary without losing information regarding which element(s) of ary refer to each object. One approach, indirect sorting (sometimes called logical sorting), is to leave ary unchanged while at the same time constructing a new integer array index having the same length as ary and having the properties that (1) index contains one occurrence of each of the integers in the set {0,1,…,ary.length-1} and (2) for all i satisfying 0<i<a.length,

c.compare(ary[index[i-1]], ary[index[i]]) <= 0

The result is that the i-th ranking element of ary (with respect to c) is ary[index[i]]. By initializing index[i] to i, for all i, and employing a suitably-designed comparator, we may once again use java.util.Arrays.sort to achieve the desired ends. Because this method requires its first argument to be of type Object[], we make index of type Integer[] rather than of type int[]. The relevant Comparator-implementing class is as follows:

import java.util.Comparator;

public class IndirectOrdering implements Comparator{

 Object[] ary;
 Comparator c;

 public IndirectOrdering(Object[] ary, Comparator c)
 { this.ary = ary; this.c = c; }

 public int compare(Object left, Object right){
 Object leftElem = ary[((Integer)left).intValue()];
 Object rightElem = ary[((Integer)right).intValue()];
 return c.compare(leftElem, rightElem);
 }
}
The key to why this works is that the compare method is used not to compare the two objects passed to it but rather ---taking those two objects as indices--- to compare the objects referred to by the elements at the indicated locations of ary.

Indirect sorting is implemented as follows:

import java.util.Comparator;

public class IndirectSort {

 public static Integer[] sort(Object[] a, Comparator c){

 Integer[] index = new Integer[a.length];

 for (int i=0; i != a.length; i = i+1)
 { index[i] = new Integer(i); }

 java.util.Arrays.sort(index, new IndirectOrdering(a,c));
 return index;
 }
}

Having established these classes, to indirectly sort an array s of type Student[] by ID and by name (yielding index arrays indexByID and indexByName, respectively), is accomplished via the invocations

Integer[] indexByID =

 IndirectSort.sort(s, new StudentCompareByID());

Integer[] indexByName =

 IndirectSort.sort(s, new StudentCompareByName());

Comparators may also be used in other array utilities. For example, java.util.Arrays also includes a method with the signature

static int binarySearch(Object[] a, Object key, Comparator c)

According to the specification, it “searches the specified array for the specified object using the binary search algorithm” with the pre-condition that the array is in ascending order with respect to the ordering induced by the given instance of Comparator. To find the location of an array element that references a student matching a given one with respect to name, we can use the following method:

// pre: s is in ascending order with respect to name

static int findStudentByName(Student[] s, Student soughtStu){

 Comparator c = new StudentCompareByName();

 return java.util.Arrays.binarySearch(s, soughtStu, c);

}

Assuming that stuNameIndex[] provided indirect access to s[] in ascending order by name (i.e., that s[stuNameIndex[i]] is the student who ranks i-th in terms of name), an indirect binary search could be carried out by this method:

static int indirectFindStudentByName(

 Student[] s, Integer[] stuNameIndex, Student soughtStu){

 Comparator c =

 new IndirectOrdering(s, new StudentCompareByName());

 return java.util.Arrays.binarySearch(stuNameIndex,

 soughtStu, c);

}
6
CONCLUSIONS

In CS2, learning the proper uses of both the Comparable and Comparator interfaces assists students in making the transition from a personal programming perspective to an understanding of the importance of software reuse and the needs of industrial-strength software development. Studying advanced uses of comparators (such as in providing multi-key and indirect orderings) helps to prepare students for higher-level courses on software development.

Instances of classes that model ordered collections of objects (e.g., ordered lists, binary search trees, priority queues) should use a comparator (i.e., an instance of a Comparator–implementing class) as the basis for comparing the objects populating the collection, rather than assuming that such objects are from a Comparable-implementing class. One way to support this approach is to make the class’s constructor take a comparator as a parameter and for all other relevant methods to use that comparator in maintaining the collection as items are inserted, deleted, etc.

The Comparable and Comparator interfaces address software development issues that transcend Java, as the concepts of natural ordering and application-specific ordering are ubiquitous. Hence, instructors who teach courses using programming languages whose standard libraries fail to include analogous components should consider adapting the concepts discussed here to those languages. For example, interfaces could be manifested as abstract classes in C++.

7
References

1.
Augenstein, Moshe J., Yedidyah Langsam, and Aaron M. Tenenbaum. Data Structures Using Java. Prentice Hall. 2003.

2.
Budd, Timothy. Classic Data Structures in Java. Addison-Wesley. 2001.

3.
Budd, Timothy. Data Structures and Other Objects Using Java, 2/E. Addison-Wesley. 2003.

4.
Carrano, Frank M., and Janet Prichard. Data Abstraction and Problem Solving with Java, Walls and Mirrors, Updated Edition. Addison-Wesley, 2001.

5.
Carrano, Frank, and Walter Savitch. Data Structures and Abstractions with Java. Prentice Hall. 2002.

6.
Dale, Nell, Chip Weems, and Daniel T. Joyce. Object-Oriented Data Structures using Java. Jones Bartlett Publishing. 2003.

7. Goodrich, Michael T., and Roberto Tamassia. Data Structures and Algorithms in Java, 2/E. J. Wiley. 2001.

8. Krueger, Charles W., “Software Reuse”, ACM Computing Surveys, v.24, n.2, June 1992, pp.131-183.

9.
Lewis, John, and Joseph Chase. Java Software Structures. Addison-Wesley. 2004.

10.
Main, Michael. Data Structures and Other Objects Using Java, 2/E. Addison-Wesley. 2003.

11.
Riley, D.. The Object of Data Abstraction and Structures (using Java). Addison-Wesley. 2003.

12.
Rowe, Glenn. An Introduction to Data Structures and Algorithms with Java. Prentice Hall. 1998.

13.
Shaffer, Clifford A. Practical Introduction to Data Structures and Algorithms, Java Edition. Prentice Hall. 1998.

14.
Standish, Thomas A. Data Structures in Java. Addison-Wesley. 1998.

15.
Tremblay, Jean-Paul, and Grant A. Cheston. Data Structures and Software Development in an Object Oriented Domain, Java Edition. Prentice Hall. 2003.

16. Weiss, Mark. Data Structures, and Problem Solving with Java, 2/E. Addison-Wesley, 2002.

