(IN)FORMALISM

John Beidler, Robert McCloskey, Yaodong Bi

Department of Computing Sciences

University of Scranton

Scranton, PA 18510

570-941-7774

{beidler|mccloske|bi}@cs.uofs.edu

ABSTRACT

This paper describes a “gentle” approach we are taking in our Data Structures and Algorithms course to introduce the use of formal notation as an aid in the specification and implementation of abstract data types. So that it can be included as comments within source code (and be processed by the javadoc utility), we chose a notation that relies upon only ASCII symbols, plus the ability to italicize, boldface, and form subscripts, superscripts, and horizontal lines.

1. Introduction

Like other proponents of the use of formal methods throughout the software development process, we are aware of their real-world utility [1,2]. But we are also aware of the difficulties one faces in trying to introduce such methods into the undergraduate curriculum. One of these is to overcome the steep learning curve characteristic of many formal methods, which is made even steeper by the limited mathematical capabilities of many computing majors.

We were intrigued by Allen Tucker’s keynote address at CCSCNE-2002, particularly his remarks regarding the unsuitability of the ASCII character set for generating mathematical notation [6]. Many formal specification notations, including Z [5], use symbols that do not appear in the ASCII character set, and hence require the use of tools more sophisticated than basic text editors or even HTML editors. Rather than being frustrated by the limits imposed by ASCII-based keyboards, which Tucker lamented in his address, we decided to do the best we could within those limits.

This paper describes a “gentle” approach we are taking in our Data Structures and Algorithms course to introduce the use of formal notation as an aid in the specification and implementation of abstract data types (ADT’s). We chose a notation that relies upon only ASCII symbols, plus the ability to italicize, boldface, and form subscripts, superscripts, and horizontal lines. For each ADT, we first present to students an informal specification and then we formalize it using our notation. The informal and formal specifications are placed side by side for easy comparison. The formal specification is then embedded within a Java interface in the form of comments that can be processed by javadoc. Different implementations (in the form of classes) of each ADT are presented, including comments describing the correspondence between the implementation and the formal specification (i.e., the abstraction function [3,4]). The formal specification for each operation of an ADT includes pre- and post-conditions.

	[image: image1.png]rormal Specification
“ Implementation 3
Implementation 2
¥ Implementation 1

Informal Description

The rest of this paper is organized as follows. Section 2 provides a flavor of the notation we use to specify ADTs. Sections 3 and 4 illustrate how our approach can be applied to the queue ADT. We begin with informal specifications and then translate them into more formal ones, which are used to generate the comments of a Java interface. Then two implementations of this interface are described. One uses the LinkedList class from Java’s API and the other is a standard static (array-based) implementation. Section 5 surveys our general experience with this approach.

	[image: image2.png](ueue (formal),
7 QueueViaLinear

QueueViaArray

diiiie formal) QueueViaLinkedList

2. Notation

Our primary goal is to be able to express ADT specifications precisely using a notation that can be generated easily within the limits imposed by basic text editors and well-known HTML markups. In particular, we limit ourselves to the following:

a. the 95 “printable” symbols of the ASCII character set,

b. superscript, subscript, bold, and italics capabilities, and

c. the ability to draw horizontal lines.

The subscripting capability allows us to write tuples with subscripted elements, such as (a1, a2, ..., an). These play an important role in modeling ADTs, especially linear ones (e.g., stack, queue, list). The zero-tuple, (), will frequently play the role of an empty structure. Also, since our eventual implementations are in Java, we use (the unfortunate) Java notation for equality, ==, and inequality, !=, as a convenience for students. We take some liberties with the tuple notation. For example, if X is the n-tuple (a1, a2, ..., an), then (obj, X) is the (n+1)-tuple (obj, a1, a2, …, an) obtained by inserting the item obj at the beginning of X. Similarly, (X, obj) is the result of inserting obj at the end of X.

We borrow three notational conventions from Z: the horizontal bar, the pound mark, #, and the tick mark, ’. Within the post-condition of an operation, a variable adorned with a tick mark denotes the value of that variable after the operation has completed. As an example, assume addItem() is a method that, when applied to a list, inserts an item at the front of it. Then this method may be specified as

void addItem(Object item)

this’ == (item, this)
indicating that, upon completion of execution of the method, the new value this’ of this (the Java object to which the method was applied) is modeled by the (n+1)-tuple obtained by inserting item at the beginning of the n-tuple modeling this.

In the specification of a method, a horizontal bar separates the pre-condition from the post-condition. Following the programming-by-contract model [4], a method is obligated to terminate in a state satisfying its post-condition, assuming that it was invoked in a state satisfying its precondition. For example, suppose that it has been stipulated that a stack is being modeled by a tuple (a0, a1, …, an-1) in which the elements appear from bottom to top. The pop operation may be specified as

Object pop()

this != ()

this == (this’, an-1)

return an-1
The pre-condition indicates that the original stack cannot be empty. The post-condition indicates that the item at the top of the stack, an-1, is the return-value and also that one obtains the (tuple modeling the) original stack’s value, this, by inserting that item at the end of (the tuple modeling) the final stack’s value, this’.

The pound mark specifies the count of the number of items. For example, #(X) is the number of items in X. Although redundant in this context, the pop method’s post-condition could include

#(this’) == #(this) – 1

As illustrated in Section 4, using this approach assists the software developer in demonstrating the correspondence between an ADT and its various implementations.

3. Specification

We begin by specifying an ADT informally, paying particular attention to being precise and complete. Here is an informal specification of the queue ADT:

	Informal

	A queue is a linear structure where objects are inserted at one end (called the rear) and removed from the other end (called the front).

	Initial value: The queue is empty.

	boolean isEmpty() (Observer): Returns true if and only if the queue is empty.

	Object frontOf() (Observer): Returns a reference to the object at the front of the queue. Applicable only to non-empty queues.

	void enqueue(Object obj) (Modifier): Places obj at rear of queue.

	void dequeue() (Modifier): Removes object at the front of the queue. Applicable only to non-empty queues.

Such an informal specification is normally accompanied by an illustration to assist in describing it:

	[image: image3.png]

The first step in obtaining a more formal specification is taken by mapping the informal illustration to a tuple:

	[image: image4.png]

Then we expand the informal table (above) by translating each entry to a description in terms of a tuple, producing the table below.

	Queue

	Informal
	Formal

	A queue is a linear structure where objects are inserted at one end (called the rear) and removed from the other end (called the front).
	A queue, Q, is either

· empty: Q == () or
· nonempty: Q == (a0, a1, ..., an-1),
· where a0 is at the front and an-1 is
· at the rear

	Initially, a queue is empty
	Initial value: Q == ()

	boolean isEmpty() (Observer): Is true if and only if the queue is empty
	Q' == Q
Return Q == ()

	Object frontOf() (Observer): Returns a reference to the object at the front of the queue. Applicable only to non-empty queues.
	Q != ()

Q' == Q
Return a0

	void enqueue(Object obj) (Modifier): Places obj at rear of the queue.
	Q' == (Q, obj)

	void dequeue() (Modifier): Decrease the size of the queue by one by removing and returning the object at the front. Note that the queue cannot be empty.
	Q != ()

Q == (a0, Q')

Now we use the right column of the table above to provide the comments for a Java interface supporting the ADT queue. If we use HTML in writing the comments (which is easy, given the typographical features to which we have restricted ourselves), the resulting interface can be processed by the javadoc utility to produce Java API-like documentation on a web page. What follows is the Queue interface. For the sake of readability, we use subscripting (e.g., a0) rather than showing the corresponding HTML “code” (a₀) .

/**

 * this == () or this == (a0, a1, ..., an-1) (n>0),

 * where a0 is at the front and an-1 is at the rear.

 *

 * Initially: this == ();

 */

public interface Queue {

 /**

 * Observer: Reports whether queue is empty

 * @returns this == () (i.e., n==0)

 */

 public boolean isEmpty();

 /**

 * Observer: Returns item at front of queue

 * !isEmpty()

 * ________________

 * @returns a0
 */

 public Object frontOf();

 /**

 * Modifier: Inserts item at rear of queue

 * this'== (this, item)

 */

 public void enqueue(Object item);

 /**

 * Modifier: Removes object at front of queue

 * !isEmpty()

 * __
 * this == (a0, this')

 */

 public void dequeue();

}

4. Implementation

We use the naming convention StructureViaApproach for classes that implement ADTs. We present three implementations of Queue to students (although in this paper only the first two will be discussed):

i. QueueViaArrayCirc: This is the classic static implementation of a queue in a “wraparound” array. The implementation includes an array “doubler” to avoid overflow when the queue grows beyond the size of the array.

ii. LinkedList: For several reasons, we like to implement every linear ADT using the Java API’s LinkedList class. One is to demonstrate software reuse. Another is to gain insight into the possible underlying structure of the LinkedList class and the run-time performance of some of its methods.

iii. QueueViaLinear1Circ: Linear1 is a class providing basic one-way linking capability. (Its two instance variables are of type Object and Linear1; hence, an object of this type is what in LISP is called a CONS cell.) In this implementation, the items on the queue are stored in a circularly-linked collection of Linear1 objects. Using a single reference to the rear of the queue, all operations can be performed in constant time.

Among the keys to demonstrating the correctness of an ADT implementation are the abstraction function, AF, which maps each “concrete” representation to the “abstract” entity it represents, and the representation invariant, RI, which describes properties of concrete representations on which operation implementations may rely [3,4].

For example, one well-known representation of a set S employs an int variable card storing S’s cardinality and an array a[] in whose first card elements are stored the members of S. The abstraction function is as follows:

AF(card, a[]) = { a[k] | 0 <= k < card }

This reflects our intention that the elements of S are stored in the array segment a[0..card-1]. A possible representation invariant is

RI(card, a[]) = 0 <= card <= a.length && a[0..card-1] has no duplicates

To demonstrate, for example, the correctness of a cardinality() method that simply returns the value of card, it is vital that card and a[] have the properties prescribed by RI.

To show the correctness of a constructor operation, it suffices to show that the concrete representation it yields satisfies RI and is mapped by AF to the desired initial abstract value (as stated in the specification).

To show the correctness of an observer operation, it suffices to show that its execution preserves the truth of RI and that the value it returns is in agreement with that described in its specification.

To show the correctness of a modifier operation, it suffices to show that its execution preserves the truth of RI and that, in addition,

Ma(AF(x)) = AF(Mc(x))

where x is an arbitrary concrete representation (satisfying RI), Ma is the abstract operation, and Mc is the concrete counterpart to Ma (i.e., its implementation). The commutative diagram, illustrated below, expresses this idea. The picture conveys the requirement that, beginning with a concrete representation x (lower left-hand corner), applying AF followed by the abstract modifier (i.e., going up and then to the right) results in the same abstract value as applying the concrete modifier followed by AF (i.e., going to the right and then up).

	

Let’s apply these concepts to the QueueViaArrayCirc class, which employs two int variables, front and qSize. The latter stores the number of items in the queue. The former points to the location in the array actual[] at which the item occupying the front of the queue is stored. Subsequent items in the queue are stored in subsequent array elements, wrapping around to the beginning of the array, if necessary. The nearby figure illustrates this approach. In the pictures, rear is to be understood as an abbreviation for (front + qSize) % actual.length.

	[image: image5.jpg]"3"‘ (qSize=0)

a
front front+qSize
b
front front+qSize
c |
front+qSize(mod) front
—] ¢7

front

fronH‘-qSize

The mapping from concrete representation (front, qSize, actual) to the abstract queue value (which we view as being a tuple) is complicated by the use of wraparound:

AF(front, qSize, actual) = (a0, a1, …, an-1)

where qSize = n and ai = actual[(front+i) % actual.length] for all i in the range 0..n-1. A reasonable representation invariant would seem to be

RI(front, qSize, actual) = 0 <= qSize, front < actual.length

reflecting the idea that actual[] should always be sufficiently long to hold the items on the queue and that front should always point to a location within actual[]. Having established AF and RI, we use them, together with the concepts developed earlier, to guide us in developing the code implementing the operations.

For example, consider how to code a constructor. According to our specification, a newly-constructed queue ought to be empty. From its definition, it is clear that for AF to yield an empty queue requires qSize = 0. Hence, we use an assignment command to establish this. In order to satisfy RI, we must assign to actual[] an array of length at least one. Furthermore, we must assign to front some value between 0 and actual.length-1. Clearly, zero is a safe choice.

Now consider the frontOf() method. According to the specification, the value it returns should be a0 . According to AF, a0 = actual[(front+0) % actual.length]. Making use of the facts that front+0 = front and 0 <= front < actual.length (the latter required by RI), this simplifies to actual[front]. Hence, this is the value that we return!

Finally, consider the dequeue() method. Let front, qSize, and actual[] have values that satisfy RI and such that AF(front, qSize, actual) = (a0, a1, …, an-1), with n>0 (so that the pre-condition is satisfied). From the specification of dequeue(), we gather that it is supposed to transform this queue into (a1, …, an-1). Hence, we seek an implementation of this method that updates these variables to values front’, qSize’, and actual’ such that AF(front’, qSize’, actual’) = (a1, …, an-1). From the definition of AF, it is clear that we must have qSize’ = n-1 (i.e., qSize’ = qSize – 1). It is also clear that if, in addition, we let front’ = front + 1 and actual’ = actual, we get the desired result. Observing that incrementing front may violate RI but that

(front + 1+ i) % actual.length = (((front + 1) % actual.length) + i) % actual.length

by well known properties of modular arithmetic leads us to let front’ = (front + 1) % actual.length. The code for the method follows.

We leave it to the reader to consider development of the remaining methods. The resulting class is shown below.

 public class QueueViaArrayCirc implements Queue{

 protected Object[] actual;

 protected int front, qSize;

 QueueViaArrayCirc(){ this(50); }

 QueueViaArrayCirc(int size){

 assert size > 0: "*** constructor requires size >0";

 actual = new Object[size];

 front = 0; qSize = 0;

 }

 private void arrayDoubler(){

 Object[] temp = new Object[2*actual.length];

 for (int i=0; i!=qSize; i++)

 { temp[front+i] = actual[(front+i) % actual.length]; }

 actual = temp;

 }

 public boolean isEmpty(){return qSize == 0;}

 public Object frontOf(){

 assert !this.isEmpty(): "*** invalid frontOf: queue empty";

 return actual[front];

 }

 public void enqueue(Object item){

 if(qSize == actual.length)

 { arrayDoubler(); }

 actual[(front + qSize) % actual.length] = item;

 qSize = qSize + 1;

 }

 public void dequeue(){

 assert !this.isEmpty(): "*** invalid dequeue: queue empty";

 qSize = qSize – 1;

 front = (front+1)%actual.length;

 }

 }

Notice that pre-conditions in the formal specification are translated to Java assert statements.

In the case of the QueueViaLinkedList class, there is an obvious abstraction function: An empty list represents an empty queue, and a non-empty list containing items a0 , a1 , …, an-1 , listed from first to last, maps to a queue containing precisely the same items, listed from front to rear. It is important to point out, however, that this first-to-front/last-to-rear mapping is not unique. Just as sensible would have been a first-to-rear/last-to-front mapping. Inevitably, these two choices lead to different implementations of the operations. Indeed, it is not hard to see that, with respect to the former, we can implement frontOf(), dequeue(), and enqueue() via getFirst(), removeFirst(), and addLast(), respectively, and, with respect to the latter, we can implement these three operations via getLast(), removeLast(), and addFirst(), respectively. However, the reader is warned that to give rigorous demonstrations that these are correct requires that precise descriptions of the behaviors of the methods in LinkedList be provided.

5. Observations

Formally specifying software is hard; however, the rewards are worth the effort. Introducing a text editor/HTML-based notation allows students to experiment with formal specifications with the tools available to them. Although the tools may not be perfect, students can experience the process of moving from an informal description of software to a formal one. The formalism can be carried from the specifications to the design, and, with comments, displayed with the code, hence providing an audit trail that maps the code to the specifications. Introducing a non-threatening text-based approach to specifications early in the curriculum opens the door for introducing a more complete approach to formal specification in upper level courses.

Direct informal observable consequences of our brief excursion into this approach indicate that:

1. Students feel comfortable with this notation and formalism in their assignments.

2. Students make fewer logic errors because the approach encourages students to think logically in specifying their classes and algorithms before they are implemented.

3. Students spend more time thinking and less time debugging.

We hope to have more formal validation of this approach in the future.

6. References

[1] Dean, C. Neville and Hinchey, Michael G., editors. Teaching and Learning Formal Methods. Academic Press, 1996.

[2] Hinchey, Michael G. and Bowen, Jonathan P., editors. Applications of Formal Methods. Prentice Hall, 1995.

[3] Liskov, Barbara. Program Development in Java. Addison-Wesley, 2001.

[4] Meyer, Bertrand. Object-Oriented Software Construction (2nd ed.). Prentice Hall, 1997.
[5] Potter, Ben, Sinclair Jane, and Till, David. An Introduction to Formal Specification and Z (2nd ed.). Prentice Hall, 1996.

[6] Tucker, Allen. Keynote Address, CCSCNE-2002, Worcester, MA, April 19, 2002.

AF(x)

x

Mc(x)

Ma(AF(x)) / AF(Mc(x))

AF

Mc

Ma

AF

