A RECURSIVE LIST PARADIGM

WITH JAVA AND C++ IMPLEMENTATIONS

John Beidler, Yaodong Bi, and Robert McCloskey

Department of Computing Sciences

University of Scranton

Scranton, PA 18510

570-941-7774

{beidler,bi,mccloske}@cs.uofs.edu

ABSTRACT

This paper presents a LISP-like recursive list paradigm with implementations in the form of Java and C++ classes. The efficacy of this approach is demonstrated in both languages with the presentation of subclasses that implement ordered lists.
1 INTRODUCTION

An early, and important, data structure paradigm is the list as presented by McCarthy [Mc60] in the programming language LISP. For reasons that are not clear, this paradigm has fallen out of favor in that the vast majority of CS 2 and data structures texts make little or no mention of it. This paper presents a LISP-like recursive list paradigm in an object framework with implementations in the form of Java and C++ classes. The efficacy of this approach is demonstrated in both languages with the presentation of subclasses that implement ordered lists.

Many texts present a list paradigm that, although not recursive in nature, allows both iterative and recursive processing. Recursive algorithms for such lists tend to be awkward. On the other hand, a purely recursive data structure lends itself to cleaner, more concise recursive algorithms.

In Section 2, we describe three paradigms for lists. In the following section, we describe in more detail the third one, which was used by McCarthy as the basis for LISP and which we call the recursive paradigm. In Section 4, implementations in Java and C++ are presented. The last section includes conclusions.

2 LIST PARADIGMS

We are aware of three basic list paradigms, which we refer to as array-like, positional, and recursive. Practically every text for CS 2 or data structures presents one or more variations of either the first or the second, sometimes in combination, but gives little or no attention to the third. (See [Ca01], [Sh01], [We02], [Dr01c], [Bu01], [Go01], and others.) In some cases recursive algorithms are presented, but they tend to be lacking in elegance because of the non-recursive nature of the underlying data structure.

In the array-like paradigm, one refers to an element in a list by its relative position i,
[image: image6.jpg]<—Rear

owards_Rear

, where n is the number of elements in the list. For example, to retrieve the ith element of l, one might write l.getItem(i). To insert a new element, say item, between the elements currently occupying positions i-1 and i, one might write l.insert(i, item). Although the array-like paradigm is easy to understand, it obscures the fact that retrieving or inserting an element at an arbitrary position within a list takes linear time, assuming a conventional representation scheme.

[image: image1.wmf]n

i

£

£

1

The positional paradigm employs the notions of cursor and navigation. A cursor (or iterator, as is currently the popular term) indicates, or marks, a position (of an object in the list) at which an operation (e.g., retrieval, insertion, removal) may be performed. Navigation is provided by methods that cause a cursor to move, either relatively (e.g., one position toward the front or toward the rear) or absolutely (e.g., to the front or to the rear). The fact that getting to a particular position in a list takes linear time is quite evident here.

[image: image5.jpg]h % Head Tail

\ (o) ey .

(empty) (non-empty) —»

In the recursive paradigm, a list is either empty or it has two components, called the head and tail. The head is the first element of the list, and the tail is itself a list (and thus a sublist), which contains the remaining elements. The only (directly) accessible element of a list is its head. It is intended that traversal through a list's elements be achieved via recursive descent and ascent, which, in effect, take the place of the positional paradigm's relative navigation methods for moving forward and backward, respectively. Indeed, it is precisely the need for explicit navigation (immediately before making a recursive call and/or immediately after returning from one) that makes recursive programs for the positional paradigm somewhat clumsy.

Naturally, the recursive paradigm lends itself to functional languages, such as LISP and Scheme. We believe, unlike Budd [Bu01], that it is also a fruitful approach in the context of object-oriented programming, and we wonder why so few authors of Java and C++ texts choose to treat it in any depth.

3 THE RECURSIVE LIST PARADIGM
Below we describe, using a Z-like notation [Po96], the pre- and post-conditions of the methods that support the recursive list paradigm. In this notation, if X denotes the value of an item when a method is called, X’ denotes its value when the method has completed execution. Also, the Java reserved word this denotes the list being accessed. An empty list is denoted by () and a non-empty list is denoted by the ordered pair (head, tail). Note the conciseness of the recursive paradigm: only five methods are required.

The query, or observer, methods include one for testing a list for emptiness and two for accessing a (non-empty) list's head and tail, respectively. The mutator methods include insert, which places a new element at the head of a list (i.e., it replaces a list by one whose head is the new element and whose tail is the original list) and remove, which deletes a (non-empty) list's head (i.e., it replaces a list with its own tail).

Given the above recursive definition of list, plus an ordering relation, precedes, defined upon the class of objects that are to occur in a list, one can define the concept of ordered list as follows: A list l is ordered if

1. l = (), or

2. l = (head, tail), and

a. tail = (), or

b. tail is ordered and precedes(head, tail.headOf()).

4 IMPLEMENTATIONS

In this section, we present Java and C++ implementations, respectively, of the recursive list paradigm. From each of the resulting classes, we derive a subclass corresponding to the concept of an ordered list. In doing so, we attempted to make good use of the features of the language. In searching for texts to use in our CS 2 and data structures courses, we have been disappointed to find that most textbook authors ---especially those who have written both Java and C++ editions--- fail to succeed in fully exploiting the unique features of their chosen programming language.

The recursive paradigm blatantly hints at an implementation using one-way links. Within this framework, we considered several implementations before settling upon the one presented here. We are happy with it for two reasons:

1. It is a direct implementation of McCarthy's concept of list, without any extra layers of software; hence it is elegant and efficient.

2. An implementation of a recursive binary tree paradigm follows directly from it. This is the subject of another paper.

With regard to (1), we note that it is common (e.g., see [Sh98] and [Sh01]) to use another class, often called Link or Node, as a foundation underlying the list class. In some cases, the programming language may make this unavoidable. For example, the Ada implementation of recursive lists, as found in [Be97], uses an extra layer of structure in order to circumvent certain parameter-passing restrictions in Ada.

4.1 Java Implementation

The RecList class below implements the recursive list paradigm. Its methods use the Assert class that appears in [Sh01] in order to verify that pre-conditions are met.

The notFalse method in Assert throws an exception and displays the indicated message if the boolean expression passed as the first parameter is false. Note that the insert and remove methods carry out the normal insertion and removal from a one-way linked structure.

One way to evaluate a data structure paradigm is to determine how easily it can be used in solving classic applications, such as maintaining an ordered list. The insert method of the OrderedRecList class demonstrates the ease with which the recursive paradigm may be used to solve this problem.

Ordering is performed in Java with a comparator, which is an object having an instance method, compare, by which two objects can be compared. (A comparator is an instance of a class that implements the java.util.Comparator interface.) Let list be an instance of the OrderedRecList class. Then list has a comparator, c, as one of its instance variables; the value of c is established upon construction of list. (It is the client's responsibility to ensure that c.compare yields results consistent with the intended definition of the precedes relation, as mentioned earlier.) Each time that the insert method (which overrides the parent class's method) is invoked upon list, it uses (within the private method precedes) c to determine the appropriate position at which to place the new item. This occurs in the context of the standard recursive algorithm for insertion into an ordered list.

To provide a simple illustration of a comparator, assume that the objects being inserted into the ordered list are from the wrapper class Integer. A comparator for these objects corresponding to the usual definition of ordering among the integers is as follows.

For a class to implement the java.util.Comparator interface, it must include a compare method (with two parameters of type Object, which we call left and right) that returns a value less than zero if
[image: image2.wmf]right

left

<

, returns zero if
[image: image3.wmf]right

left

=

, and returns a value greater than zero if
[image: image4.wmf]right

left

>

.

4.2 C++ Implementation

The specification for an implementation of the recursive list paradigm as a C++ class template appears in the header file below. The class template follows the organizational traditions for C++; methods are organized for easy reference. C++ templates provide direst support for generic programming.

A class template can be instantiated for different data types or classes. The compiler performs type checking to make sure objects in the list are of the intended data type or class. While the Java implementation allows only objects of reference types to be elements of a list (e.g., values of the primitive type int cannot be inserted without first "wrapping" them using the class Integer), the C++ implementation allows data of any type. The destructor is defined to make sure memory is properly released when a list is destructed; in Java there is no need for this, as the garbage collector is responsible for freeing space occupied by objects that are no longer accessible.

An ordered recursive list subclass based on the recursive list paradigm appears in the C++ template below. As in the Java implementation, the C++ implementation overrides the parent class's insert function with one that places a new element in its proper place in the list, rather than at the head. While the C++ implementation could utilize the comparator technique, we chose a different approach. Elements (of either a primitive or class type) that are to be inserted into an ordered list must be comparable via an overloading of the greater-than operator (>). As in the Java implementation, the two non-default constructors are declared to be private so that they cannot be invoked from outside the class.

The C++ code for these methods is somewhat analogous to the Java code presented in the previous section; all code is available on our web site. An ordered recursive list subclass based on the recursive list paradigm appears in the accompanying C++ template.

5 CONCLUSIONS/OBSERVATIONS

Although we intended to demonstrate the simple elegance of the recursive list paradigm, we also are making a plea for paradigm-based presentations of data structures. We believe it is better to present clean and well-focused paradigms than to take the "Swiss army knife" approach that seems to be prevalent in many texts. Besides, using a clean recursive paradigm may help students to develop an improved understanding of recursion.

Complete code for the Java and C++ implementations described in this paper are available at http://www.cs.uofs.edu/~beidler/recursive. The code includes several classical list methods, including a recursive list merge. The recursive list paradigm sets the stage for the presentation of a recursive tree paradigm. Classes to represent binary search trees, AVL trees, and n-ary trees can be easily constructed as subclasses of a recursive binary tree class. But that is the subject of another paper.

6 REFERENCES

[Be97]
Beidler, John. Data Structures and Algorithms. Springer Verlag. 1997.

[Bu01]
Budd, Timothy. Classic Data Structures in Java. Addison Wesley Longman. 2001.

[Ca01]
Carrano, Frank M., and Janet J. Prichard. Data Abstraction and Problem Solving with Java. Addison Wesley Longman. 2001.

[Dr01j]
Drozdek, Adam. Data Structures and Algorithms in Java. Brooks Cole. 2001.

[Dr01c] Drozdek, Adam. Data Structures and Algorithms in C++. Brooks Cole. 2001.

[Fo02]
Ford, William, and William Topp. Data Structures with C++ using STL, Second Edition. Prentice Hall. 2002.

[Go01]
Goodrich, Michael T., and Roberto Tamassia. Data Structures and Algorithms in Java, Second Edition. Wiley. 2001.

[Mc60]
McCarthy, John. “Recursive functions of symbolic expressions and their computation by machine”. CACM 3(1960), 184-195.

[Po96]
Potter, B., J. Sinclair, and D. Till. An Introduction to Formal Specification and Z, Second Edition. Prentice Hall. 1996.

[Ro98]
Rowe, Glen W. An Introduction to Data Structures and and Algorithms with Java. Prentics Hall. 1998.

[Sh98]
Shaffer, Clifford A. A Practical Introduction to Data Structures and Algorithm Analysis, Java Edition. Prentice Hall. 1998.

[Sh01]
Shaffer, Clifford A. A Practical Introduction to Data Structures and Algorithm Analysis, Second Edition. Prentice Hall. 2001.

[We02] Weiss, Mark Allen. Data Structures and Problem Solving using Java. Addison Wesley Longman. 2002.

[Wo61] Woodward, P.M., and D.P. Jenkins. “LISP”. Comp.J. 4 (1961) 47-53.

Attributes

 private Object head

 private RecList tail

Methods

 public boolean isEmpty();� // returns this == ()

 public Object headOf();� // this != (); returns this.head

 � public RecList tailOf();� // this != (); returns this.tail

 public RecList insert(Object newHead);� // this' == (newHead, this)

 // returns this'

 public Object remove();� // this' == this.tail;

 // returns this.head

template <class Item>

class OrderedRecList: public RecList<Item>

{

public:

	// constructor

	OrderedRecList():RecList<Item>() {}

	// mutator

	OrderedRecList& insert(const Item &x);

private:

	OrderedRecList(const Item& x, OrderedRecList& list);

	OrderedRecList(Item* x, OrderedRecList& list);

};

public class RecList {� // if this != () then this = (head, tail)�� protected Object head;� protected RecList tail;� � public RecList() { head = null; tail = null; }

 public RecList(Object Head) { head = Head; tail = new RecList(); }

 public RecList(Object Head, RecList Tail) { head = Head; tail = Tail; }

 public boolean isEmpty() { return tail == null; }� public Object headOf() {

 Assert.notFalse(!isEmpty(), "List is empty, invalid headOf");� return head;� } � public RecList tailOf() {

 Assert.notFalse(!isEmpty(), "List is empty, invalid tailOf");� return tail;

 }

 public RecList insert(Object newHead) {

 tail = new RecList(head, tail); head = newHead;� return this;� }

 public Object remove(){ � Assert.notFalse(!isEmpty(), "List is empty, invalid remove");� Object temp = head;� head = tail.head; tail = tail.tail;� return temp;� }�} // class RecList

import java.util.Comparator;��public class OrderedRecList extends RecList {�� private Comparator c;�� public OrderedRecList(Comparator comp) { super(); c = comp; }

� private OrderedRecList(Object item, OrderedRecList tail) {� super(item, tail);� c = tail.c;� }

� public RecList insert(Object item) { // overrides parent� if (isEmpty()) {� tail = new OrderedRecList(c);� head = item;� } else if (precedes(item, headOf())) {� tail = new OrderedRecList(head, (OrderedRecList) tail);� head = item;� } else { � tail.insert(item);� }� return this;� }�� private boolean precedes(Object a, Object b)� { return c.compare(a,b) <= 0; }��}

public class IntegerComparator implements java.util.Comparator {�� public int compare(Object left, Object right) {� return ((Integer) left).compareTo(right);

 // Without using the compareTo() method of class Integer,

 // the method body can be written as follows:

 // if (((Integer)left).intVal() < ((Integer)right).intVal())

 // return -1;

 // else if (((Integer)left).intVal() > ((Integer)right).intVal())

 // return 1;

 // else

 // return 0;

 }�

template <class Item>

class RecList

{

public:

	// constructors

	RecList(): head(0),tail(0) {}

	RecList(const Item& x);

	RecList(const Item& x, RecList& list);

	// queries/observers

	bool isEmpty() const;

	Item& headOf() const;

	RecList& tailOf() const;

	// mutators

	virtual RecList& insert(const Item &x);

	Item remove();

	

	// destructor

	~RecList() { delete head; delete tail; }

protected:

	Item* head;

	RecList* tail;

private:

	RecList(Item* x, RecList& list);

};

_1066925260.unknown

_1067245359.unknown

_1066925284.unknown

_1066925211.unknown

